A method of mining bilingual resources from Web Based on Maximum Frequent Sequential Pattern

Guiping Zhang, Yang Luo, D. Ji
{"title":"A method of mining bilingual resources from Web Based on Maximum Frequent Sequential Pattern","authors":"Guiping Zhang, Yang Luo, D. Ji","doi":"10.1109/NLPKE.2010.5587831","DOIUrl":null,"url":null,"abstract":"The bilingual resources are indispensable and vital resources in the NPL fields, such as machine translation, etc. A large amount of electronic information is embedded in the Internet, which can be used as a potential information source of large-scale multi-language corpus, so it is a potential and feasible way to mine a great capacity of true bilingual resources from the Web. This paper proposes a method of mining bilingual resources from the Web based on Maximum Frequent Sequential Pattern. The method uses the heuristic approach to search and filter the candidate bilingual web pages, then mines patterns using maximum frequent sequential, and uses a machine learning method for extending the pattern base and verifying bilingual resources in accordance with the Japanese to Chinese word proportion. The experimental results indicate that the method could extract bilingual resources efficiently, with the precision rate over 90%.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The bilingual resources are indispensable and vital resources in the NPL fields, such as machine translation, etc. A large amount of electronic information is embedded in the Internet, which can be used as a potential information source of large-scale multi-language corpus, so it is a potential and feasible way to mine a great capacity of true bilingual resources from the Web. This paper proposes a method of mining bilingual resources from the Web based on Maximum Frequent Sequential Pattern. The method uses the heuristic approach to search and filter the candidate bilingual web pages, then mines patterns using maximum frequent sequential, and uses a machine learning method for extending the pattern base and verifying bilingual resources in accordance with the Japanese to Chinese word proportion. The experimental results indicate that the method could extract bilingual resources efficiently, with the precision rate over 90%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大频繁序列模式的Web双语资源挖掘方法
双语资源是机器翻译等非物理物理领域不可缺少的重要资源。互联网中嵌入了大量的电子信息,这些信息可以作为大规模多语言语料库的潜在信息源,因此从网络中挖掘大容量的真正双语资源是一种潜在的、可行的方法。提出了一种基于最大频繁序列模式的Web双语资源挖掘方法。该方法采用启发式方法对候选双语网页进行搜索和过滤,然后利用最大频繁序列挖掘模式,并采用机器学习方法根据日文与中文字数比例扩展模式库并对双语资源进行验证。实验结果表明,该方法能够有效地提取双语资源,准确率达到90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1