Study on the Influence of Radon Collector Parame

Shangting Jiang, J. Shan, Hui Yang, Jinglin Li, Songsong Li, Tao Guo
{"title":"Study on the Influence of Radon Collector Parame","authors":"Shangting Jiang, J. Shan, Hui Yang, Jinglin Li, Songsong Li, Tao Guo","doi":"10.11648/J.AJPA.20190704.13","DOIUrl":null,"url":null,"abstract":"Accurate measurement of radon exhalation rate of building materials plays an important role in controlling indoor radon concentration. In order to achieve rapid and accurate measurement of radon exhalation, the influence of the volume, base area and pumping flow rate of radon collector on radon exhalation rate was studied to optimize the measurement parameters of radon exhalation rate and improve the measurement efficiency of radon exhalation rate. The study has shown that the larger the volume of radon collector is, the longer the radon concentration equilibrium time will be when radon exhalation rate is measured with constant pumping flow rate and surface precipitation rate, while the influence of the volume of radon collector on the equilibrium radon concentration can be neglected, but there is a specific linear relationship between the equilibrium radon concentration and the base area of radon collector. When the radon exhalation rate is measured with constant volume and base area of radon collector, the higher the pumping flow rate is, the shorter the radon concentration equilibrium time is and the smaller the equilibrium radon concentration is. When the radon exhalation rate is 3.9Bq∙m-2∙s-1 in the experiment, the optimum volume of radon collector is 2.1×10-3m3, the optimum base area is 3.46×10-2m-2, and the optimum pumping flow rate is 1.349×10-5m3/s. The measurement parameters of the radon exhalation rate, such as the best volume and base area of radon collector and the pumping flow rate can be obtained for different radon exhalation rates through this optimization method.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"47 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20190704.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Accurate measurement of radon exhalation rate of building materials plays an important role in controlling indoor radon concentration. In order to achieve rapid and accurate measurement of radon exhalation, the influence of the volume, base area and pumping flow rate of radon collector on radon exhalation rate was studied to optimize the measurement parameters of radon exhalation rate and improve the measurement efficiency of radon exhalation rate. The study has shown that the larger the volume of radon collector is, the longer the radon concentration equilibrium time will be when radon exhalation rate is measured with constant pumping flow rate and surface precipitation rate, while the influence of the volume of radon collector on the equilibrium radon concentration can be neglected, but there is a specific linear relationship between the equilibrium radon concentration and the base area of radon collector. When the radon exhalation rate is measured with constant volume and base area of radon collector, the higher the pumping flow rate is, the shorter the radon concentration equilibrium time is and the smaller the equilibrium radon concentration is. When the radon exhalation rate is 3.9Bq∙m-2∙s-1 in the experiment, the optimum volume of radon collector is 2.1×10-3m3, the optimum base area is 3.46×10-2m-2, and the optimum pumping flow rate is 1.349×10-5m3/s. The measurement parameters of the radon exhalation rate, such as the best volume and base area of radon collector and the pumping flow rate can be obtained for different radon exhalation rates through this optimization method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氡捕集器参数影响的研究
准确测量建筑材料的氡释放率对控制室内氡浓度具有重要作用。为了实现氡呼出量的快速准确测量,研究了氡收集器体积、基面积和泵送流量对氡呼出率的影响,优化了氡呼出率的测量参数,提高了氡呼出率的测量效率。研究表明,在恒定抽气流量和地表沉淀速率下测量氡呼出率时,氡收集器体积越大,氡浓度平衡时间越长,而氡收集器体积对氡平衡浓度的影响可以忽略不计,但氡平衡浓度与氡收集器基底面积之间存在特定的线性关系。当氡收集器体积和基面积恒定时,抽气流量越大,氡浓度平衡时间越短,氡平衡浓度越小。实验中氡呼出率为3.9Bq∙m-2∙s-1时,氡捕集器的最佳容积为2.1×10-3m3,最佳底面积为3.46×10-2m-2,最佳抽气流量为1.349×10-5m3/s。通过该优化方法,可以得到不同氡释放率下氡收集器的最佳容积和基面积以及泵送流量等氡释放率的测量参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of High Gain Single Stage Telescopic Cmos Operational Amplifier Evaluation of the Risk Associated with Drinkable Water Sources Through Analysis of Gross Alpha and Beta Radioactivity Levels in Chosen Locations, Mubi – North Heat Transfer Behavior of a PTC Receiver Tube Using Transversal Focal Inserts and CFD Electronic and Mechanical Properties of Chemical Bonds (A-O & B-O) in Cubic Phase A+2B+4O3 Perovskite Oxides An Energy Criterion for Rheological Failure of Rock and Application in Stability Analysis of Natural High Slope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1