Robust content-based image searches for copyright protection

Sid-Ahmed Berrani, L. Amsaleg, P. Gros
{"title":"Robust content-based image searches for copyright protection","authors":"Sid-Ahmed Berrani, L. Amsaleg, P. Gros","doi":"10.1145/951676.951690","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel content-based image retrieval scheme for image copy identification. Its goal is to detect matches between a set of doubtful images and the ones stored in the database of the legal holders of the photographies. If an image was stolen and used to create a pirated copy, it tries to identify from which original image that copy was created. The image recognition scheme is based on local differential descriptors. Therefore, the matching process takes into account a large set of variations that might have been applied to stolen images in order to create pirated copies. The high cost and the complexity of this image recognition scheme requires a very efficient retrieval process since many individual queries must be executed before being able to construct the final result. This paper therefore proposes to use a novel search method that trades the precision of each individual search for reduced query execution time. This imprecision has only little impact on the overall recognition performance since the final result is a consolidation of many partial results. However, it dramatically accelerates queries. This result has then been corroborated by a theoretically study. Experiments show the efficiency and the robustness of the proposed scheme.","PeriodicalId":415406,"journal":{"name":"ACM International Workshop on Multimedia Databases","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Workshop on Multimedia Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/951676.951690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

This paper proposes a novel content-based image retrieval scheme for image copy identification. Its goal is to detect matches between a set of doubtful images and the ones stored in the database of the legal holders of the photographies. If an image was stolen and used to create a pirated copy, it tries to identify from which original image that copy was created. The image recognition scheme is based on local differential descriptors. Therefore, the matching process takes into account a large set of variations that might have been applied to stolen images in order to create pirated copies. The high cost and the complexity of this image recognition scheme requires a very efficient retrieval process since many individual queries must be executed before being able to construct the final result. This paper therefore proposes to use a novel search method that trades the precision of each individual search for reduced query execution time. This imprecision has only little impact on the overall recognition performance since the final result is a consolidation of many partial results. However, it dramatically accelerates queries. This result has then been corroborated by a theoretically study. Experiments show the efficiency and the robustness of the proposed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒的基于内容的图像版权保护搜索
提出了一种新的基于内容的图像检索方案,用于图像副本识别。它的目标是检测一组可疑图像与存储在照片合法持有者数据库中的图像之间的匹配。如果图像被盗并用于创建盗版副本,它会尝试识别该副本是从哪个原始图像创建的。该图像识别方案基于局部微分描述符。因此,匹配过程要考虑到大量的变化,这些变化可能已经应用于被盗图像,以创建盗版副本。这种图像识别方案的高成本和复杂性要求非常高效的检索过程,因为在能够构造最终结果之前必须执行许多单独的查询。因此,本文提出了一种新的搜索方法,该方法以每个单独搜索的精度为代价来减少查询执行时间。这种不精确对整体识别性能的影响很小,因为最终结果是许多部分结果的整合。然而,它极大地加快了查询速度。这一结果随后被一项理论研究所证实。实验证明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic image annotation and retrieval using subspace clustering algorithm Indexing of variable length multi-attribute motion data A motion based scene tree for browsing and retrieval of compressed videos VRules: an effective association-based classifier for videos Content-based sub-image retrieval using relevance feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1