Global Sensitivity Analysis for Power Systems via Quasi-Monte Carlo Methods

Jamie Fox, G. Ökten, B. Uzunoğlu
{"title":"Global Sensitivity Analysis for Power Systems via Quasi-Monte Carlo Methods","authors":"Jamie Fox, G. Ökten, B. Uzunoğlu","doi":"10.1109/ICSRS48664.2019.8987666","DOIUrl":null,"url":null,"abstract":"There are many inputs with uncertainty in a power system, due to factors such as uncertainties in the distributed renewable generation, or natural disasters like hurricanes. The global sensitivity analysis of a model quantifies the importance of each input parameter to the model output when input parameters have uncertainty. In global sensitivity analysis, unlike local sensitivity analysis, all input factors are varied simultaneously, and as a consequence, one can assess the impact of the higher order interactions among the parameters. In this paper we will use global sensitivity analysis, in particular the Sobol' sensitivity indices, to assess the importance of input parameters in the IEEE 14-bus modified test system. By identifying unimportant input parameters, we will reduce the complexity of the model. We will use randomized quasi-Monte Carlo methods to estimate the sensitivity indices and perform uncertainty quantification for the output of the reduced model.","PeriodicalId":430931,"journal":{"name":"2019 4th International Conference on System Reliability and Safety (ICSRS)","volume":"354 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on System Reliability and Safety (ICSRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSRS48664.2019.8987666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

There are many inputs with uncertainty in a power system, due to factors such as uncertainties in the distributed renewable generation, or natural disasters like hurricanes. The global sensitivity analysis of a model quantifies the importance of each input parameter to the model output when input parameters have uncertainty. In global sensitivity analysis, unlike local sensitivity analysis, all input factors are varied simultaneously, and as a consequence, one can assess the impact of the higher order interactions among the parameters. In this paper we will use global sensitivity analysis, in particular the Sobol' sensitivity indices, to assess the importance of input parameters in the IEEE 14-bus modified test system. By identifying unimportant input parameters, we will reduce the complexity of the model. We will use randomized quasi-Monte Carlo methods to estimate the sensitivity indices and perform uncertainty quantification for the output of the reduced model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于准蒙特卡罗方法的电力系统全局灵敏度分析
由于分布式可再生能源发电的不确定性或飓风等自然灾害等因素,电力系统中存在许多具有不确定性的输入。模型的全局敏感性分析是在输入参数具有不确定性的情况下,量化每个输入参数对模型输出的重要程度。在全局敏感性分析中,与局部敏感性分析不同,所有输入因素同时变化,因此,可以评估参数之间高阶相互作用的影响。在本文中,我们将使用全局灵敏度分析,特别是Sobol灵敏度指数,来评估输入参数在IEEE 14总线改进测试系统中的重要性。通过识别不重要的输入参数,我们将降低模型的复杂性。我们将使用随机准蒙特卡罗方法来估计灵敏度指标,并对简化模型的输出进行不确定性量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a Model-centric Approach for Developing Dependable Smart Grid Applications Reliability of Systems with Simultaneous and Consecutive Failures Interval Type-2 Fuzzy Reliability Modeling for Recycling Facility Condition Based Maintenance for Industrial Labeling Machine Accellerating PRISM Validation of Vehicle Platooning Through Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1