Performance of various EMG features in identifying ARM movements for control of multifunctional prostheses

X. Liu, Rui Zhou, Licai Yang, Guanglin Li
{"title":"Performance of various EMG features in identifying ARM movements for control of multifunctional prostheses","authors":"X. Liu, Rui Zhou, Licai Yang, Guanglin Li","doi":"10.1109/YCICT.2009.5382366","DOIUrl":null,"url":null,"abstract":"In this study, we evaluated classification performance of electromyography (EMG) four time-domain features and autoregressive model features and their combination in identifying 11 classes of arm and hand movements in both able-bodied subjects and amputees. Our results showed that using three time-domain features could achieve similar classification accuracy as using four features. Using AR model coefficients as EMG features, a six-order AR model might be optimal. For the evaluation of performance of EMG pattern recognition in identifying various movements, the amputees should be used. The outcomes of this study may aid the future development of a practical multifunctional myoelectric prosthesis for arm amputees.","PeriodicalId":138803,"journal":{"name":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2009.5382366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this study, we evaluated classification performance of electromyography (EMG) four time-domain features and autoregressive model features and their combination in identifying 11 classes of arm and hand movements in both able-bodied subjects and amputees. Our results showed that using three time-domain features could achieve similar classification accuracy as using four features. Using AR model coefficients as EMG features, a six-order AR model might be optimal. For the evaluation of performance of EMG pattern recognition in identifying various movements, the amputees should be used. The outcomes of this study may aid the future development of a practical multifunctional myoelectric prosthesis for arm amputees.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各种肌电特征在识别手臂运动以控制多功能假体中的表现
在这项研究中,我们评估了肌电图(EMG)四个时域特征和自回归模型特征及其组合在识别健全和截肢者11类手臂和手部运动中的分类性能。结果表明,使用三个时域特征可以达到与使用四个特征相似的分类精度。使用AR模型系数作为肌电特征,六阶AR模型可能是最优的。为了评估肌电模式识别在识别各种运动中的表现,应该使用截肢者。这项研究的结果可能有助于未来发展一种实用的多功能肌电假肢用于手臂截肢者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation study of queues' length balance in CICQ switching fabrics Stereo-motion estimation for visual object tracking Regularization of orthogonal neural networks using fractional derivatives System identifiability for sparse and nonuniform samples via spectral analysis A probabilistic filter protocol for Continuous Nearest-Neighbor Query
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1