Probe, cluster, and discover: focused extraction of QA-Pagelets from the deep Web

James Caverlee, Ling Liu, David J. Buttler
{"title":"Probe, cluster, and discover: focused extraction of QA-Pagelets from the deep Web","authors":"James Caverlee, Ling Liu, David J. Buttler","doi":"10.1109/ICDE.2004.1319988","DOIUrl":null,"url":null,"abstract":"We introduce the concept of a QA-Pagelet to refer to the content region in a dynamic page that contains query matches. We present THOR, a scalable and efficient mining system for discovering and extracting QA-Pagelets from the deep Web. A unique feature of THOR is its two-phase extraction framework. In the first phase, pages from a deep Web site are grouped into distinct clusters of structurally-similar pages. In the second phase, pages from each page cluster are examined through a subtree filtering algorithm that exploits the structural and content similarity at subtree level to identify the QA-Pagelets.","PeriodicalId":358862,"journal":{"name":"Proceedings. 20th International Conference on Data Engineering","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 20th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2004.1319988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We introduce the concept of a QA-Pagelet to refer to the content region in a dynamic page that contains query matches. We present THOR, a scalable and efficient mining system for discovering and extracting QA-Pagelets from the deep Web. A unique feature of THOR is its two-phase extraction framework. In the first phase, pages from a deep Web site are grouped into distinct clusters of structurally-similar pages. In the second phase, pages from each page cluster are examined through a subtree filtering algorithm that exploits the structural and content similarity at subtree level to identify the QA-Pagelets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探测、聚类和发现:从深度网络集中提取QA-Pagelets
我们引入QA-Pagelet的概念来引用包含查询匹配的动态页面中的内容区域。我们提出了THOR,一个可扩展且高效的挖掘系统,用于从深度网络中发现和提取QA-Pagelets。THOR的一个独特之处在于它的两相提取框架。在第一阶段,来自深度Web站点的页面被分组到结构相似的不同页面集群中。在第二阶段,通过子树过滤算法检查每个页面簇中的页面,该算法利用子树级别的结构和内容相似性来识别QA-Pagelets。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ContextMetrics/sup /spl trade//: semantic and syntactic interoperability in cross-border trading systems EShopMonitor: a Web content monitoring tool A probabilistic approach to metasearching with adaptive probing Simple, robust and highly concurrent b-trees with node deletion Substructure clustering on sequential 3d object datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1