Non-parametric Multivariate Kernel Regression Estimation to Describe Cognitive Processes and Mental Representations

S. Slama, Y. Slaoui, Gwendoline Le Du, C. Perret
{"title":"Non-parametric Multivariate Kernel Regression Estimation to Describe Cognitive Processes and Mental Representations","authors":"S. Slama, Y. Slaoui, Gwendoline Le Du, C. Perret","doi":"10.19139/soic-2310-5070-1507","DOIUrl":null,"url":null,"abstract":"In this research paper, we set forward a non-parametric multivariate recursive kernel regression estimator under missing data using the propensity score approach in order to describe writing word production. Our main objective is to explore cognitive processes and mental representations mobilized when a human being prepares to write a word according to the idea developed in Perret and Olive (2019). We investigate the asymptotic properties of the proposed recursive estimator and compare them to the well known Nadaraya-Watson’s regression estimator. We calculate the bias and the variance of the proposed estimator which depend on the choice of some parameters such as the stepsize and the bandwidth. We examine some data-driven procedures to select these parameters. Thus, we demonstrate that, under some optimal choices of these parameters, the MSE (Mean Squared Error) of the proposed estimator can be smaller than the one obtained by using Nadaraya Watson’s regression estimator. The elaborated estimator is then applied to the behavioral data to classify some participants in groups. This classification may stand for a departure point to tackle written behavior variations.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research paper, we set forward a non-parametric multivariate recursive kernel regression estimator under missing data using the propensity score approach in order to describe writing word production. Our main objective is to explore cognitive processes and mental representations mobilized when a human being prepares to write a word according to the idea developed in Perret and Olive (2019). We investigate the asymptotic properties of the proposed recursive estimator and compare them to the well known Nadaraya-Watson’s regression estimator. We calculate the bias and the variance of the proposed estimator which depend on the choice of some parameters such as the stepsize and the bandwidth. We examine some data-driven procedures to select these parameters. Thus, we demonstrate that, under some optimal choices of these parameters, the MSE (Mean Squared Error) of the proposed estimator can be smaller than the one obtained by using Nadaraya Watson’s regression estimator. The elaborated estimator is then applied to the behavioral data to classify some participants in groups. This classification may stand for a departure point to tackle written behavior variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
描述认知过程和心理表征的非参数多元核回归估计
在本文中,我们利用倾向得分方法提出了缺失数据下的非参数多元递归核回归估计,以描述文字生成。我们的主要目标是探索当一个人准备根据Perret和Olive(2019)提出的想法写一个词时调动的认知过程和心理表征。我们研究了所提出的递归估计量的渐近性质,并将其与著名的Nadaraya-Watson回归估计量进行了比较。我们计算了该估计器的偏差和方差,这些偏差和方差取决于步长和带宽等参数的选择。我们检查一些数据驱动的过程来选择这些参数。因此,我们证明,在这些参数的某些最优选择下,所提出的估计量的MSE (Mean Squared Error)可以小于使用Nadaraya Watson的回归估计量得到的MSE (Mean Squared Error)。然后,将精心设计的估计器应用于行为数据,对分组中的一些参与者进行分类。这种分类可以作为处理书面行为变化的出发点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1