Evaluating Encoding and Decoding Approaches for Spiking Neuromorphic Systems

Catherine D. Schuman, Charles Rizzo, John McDonald-Carmack, Nicholas D. Skuda, J. Plank
{"title":"Evaluating Encoding and Decoding Approaches for Spiking Neuromorphic Systems","authors":"Catherine D. Schuman, Charles Rizzo, John McDonald-Carmack, Nicholas D. Skuda, J. Plank","doi":"10.1145/3546790.3546792","DOIUrl":null,"url":null,"abstract":"A challenge associated with effectively using spiking neuromorphic systems is how to communicate data to and from the neuromorphic implementation. Unless a neuromorphic or event-based sensing system is used, data has to be converted into spikes to be processed as input by the neuromorphic system. The output spikes produced by the neuromorphic system have to be turned back into a value or decision. There are a variety of commonly used input encoding approaches, such as rate coding, temporal coding, and population coding, as well as several commonly used output approaches, such as voting or first-to-spike. However, it is not clear which is the most appropriate approach to use or whether the choice of encoding or decoding approach has a significant impact on performance. In this work, we evaluate the performance of several encoding and decoding approaches on classification, regression, and control tasks. We show that the choice of encoding and decoding approaches significantly impact performance on these tasks, and we make recommendations on how to select the appropriate encoding and decoding approaches for real-world applications.","PeriodicalId":104528,"journal":{"name":"Proceedings of the International Conference on Neuromorphic Systems 2022","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Neuromorphic Systems 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546790.3546792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A challenge associated with effectively using spiking neuromorphic systems is how to communicate data to and from the neuromorphic implementation. Unless a neuromorphic or event-based sensing system is used, data has to be converted into spikes to be processed as input by the neuromorphic system. The output spikes produced by the neuromorphic system have to be turned back into a value or decision. There are a variety of commonly used input encoding approaches, such as rate coding, temporal coding, and population coding, as well as several commonly used output approaches, such as voting or first-to-spike. However, it is not clear which is the most appropriate approach to use or whether the choice of encoding or decoding approach has a significant impact on performance. In this work, we evaluate the performance of several encoding and decoding approaches on classification, regression, and control tasks. We show that the choice of encoding and decoding approaches significantly impact performance on these tasks, and we make recommendations on how to select the appropriate encoding and decoding approaches for real-world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评价尖峰神经形态系统的编码和解码方法
有效使用尖峰神经形态系统的一个挑战是如何与神经形态实现进行数据通信。除非使用神经形态或基于事件的传感系统,否则数据必须转换为峰值,然后由神经形态系统作为输入进行处理。神经形态系统产生的输出尖峰必须被转换回一个值或决定。有各种常用的输入编码方法,如速率编码、时间编码和总体编码,以及几种常用的输出方法,如投票或先到尖峰。然而,目前尚不清楚哪种方法是最合适的,或者选择编码或解码方法是否对性能有重大影响。在这项工作中,我们评估了几种编码和解码方法在分类、回归和控制任务上的性能。我们展示了编码和解码方法的选择对这些任务的性能有显著影响,并就如何为实际应用程序选择适当的编码和解码方法提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-Supervised Graph Structure Learning on Neuromorphic Computers A Neuromorphic Algorithm for Radiation Anomaly Detection Optimizing Recurrent Spiking Neural Networks with Small Time Constants for Temporal Tasks LODeNNS: A Linearly-approximated and Optimized Dendrocentric Nearest Neighbor STDP Apples-to-spikes: The first detailed comparison of LASSO solutions generated by a spiking neuromorphic processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1