Fuzzy clustering in digital mammograms using Gray Level co-occurrence matrices

S. Sujit, S. Parasuraman, A. Kadirvelu
{"title":"Fuzzy clustering in digital mammograms using Gray Level co-occurrence matrices","authors":"S. Sujit, S. Parasuraman, A. Kadirvelu","doi":"10.1109/ICETEEEM.2012.6494499","DOIUrl":null,"url":null,"abstract":"Digital mammograms are difficult images to interpret. Data clustering plays a very crucial role in automatic detection of clustered calcifications in digital mammograms. The aim of this paper is to review and compare the performance of the three main data clustering techniques namely K-means clustering, Fuzzy C-Means clustering and Subtractive clustering. The digital mammograms for the study are taken from Mammographie Image Analysis Society (MIAS) digital mammogram database. The contrast limited adaptive histogram equalization (CLAHE) method is used to reduce noise in digital mammograms. The Gray Level co-occurrence Matrices (GLCM) for different distances and angles are constructed. The performance results of the clustering techniques based on mean square errors are tabulated and compared. It was found that the Subtractive clustering technique outperforms the other two techniques.","PeriodicalId":213443,"journal":{"name":"2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM)","volume":"458 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETEEEM.2012.6494499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Digital mammograms are difficult images to interpret. Data clustering plays a very crucial role in automatic detection of clustered calcifications in digital mammograms. The aim of this paper is to review and compare the performance of the three main data clustering techniques namely K-means clustering, Fuzzy C-Means clustering and Subtractive clustering. The digital mammograms for the study are taken from Mammographie Image Analysis Society (MIAS) digital mammogram database. The contrast limited adaptive histogram equalization (CLAHE) method is used to reduce noise in digital mammograms. The Gray Level co-occurrence Matrices (GLCM) for different distances and angles are constructed. The performance results of the clustering techniques based on mean square errors are tabulated and compared. It was found that the Subtractive clustering technique outperforms the other two techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于灰度共现矩阵的数字乳房x光片模糊聚类
数字乳房x光照片很难解读。数据聚类在数字乳房x光片簇状钙化的自动检测中起着至关重要的作用。本文的目的是回顾和比较三种主要的数据聚类技术,即k -均值聚类,模糊c -均值聚类和减法聚类的性能。本研究的数字乳房x线照片取自乳房x线照片图像分析协会(MIAS)的数字乳房x线照片数据库。采用对比度有限的自适应直方图均衡化(CLAHE)方法降低数字乳房x线照片中的噪声。构造了不同距离和角度的灰度共生矩阵(GLCM)。将基于均方误差的聚类技术的性能结果制成表格并进行了比较。结果表明,减法聚类技术优于其他两种聚类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and simulation of thirty bus system employing solid state circuit breaker A real time embedded novel finger-vein recognition system for authenticated on teller machine A high speed reconfigurable virus detection processor for embedded network security Maintenance — Free solar energy drip irrigation using battery-less RF powered wireless sensors over AD-HOC network Differential Evolution algorithm based Weighted Additive FGA approach for optimal power flow using muti-type FACTS devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1