Representational bias in expression and annotation of emotions in audiovisual databases

William Saakyan, Olya Hakobyan, Hanna Drimalla
{"title":"Representational bias in expression and annotation of emotions in audiovisual databases","authors":"William Saakyan, Olya Hakobyan, Hanna Drimalla","doi":"10.4108/eai.20-11-2021.2314203","DOIUrl":null,"url":null,"abstract":"Emotion recognition models can be confounded by representation bias, where populations of certain gender, age or ethnoracial characteristics are not sufficiently represented in the training data. This may result in erroneous predictions with consequences of personal relevance in sensitive contexts. We systematically examined 130 emotion (audio, visual and audio-visual) datasets and found that age and ethnoracial background are the most affected dimensions, while gender is largely balanced in emotion datasets. The observed disparities between age and ethnoracial groups are compounded by scarce and inconsistent reports of demographic information. Finally, we observed a lack of information about the annotators of emotion datasets, another potential source of bias.","PeriodicalId":119759,"journal":{"name":"Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI, CAIP 2021, 20-24 November 2021, Bologna, Italy","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI, CAIP 2021, 20-24 November 2021, Bologna, Italy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.20-11-2021.2314203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Emotion recognition models can be confounded by representation bias, where populations of certain gender, age or ethnoracial characteristics are not sufficiently represented in the training data. This may result in erroneous predictions with consequences of personal relevance in sensitive contexts. We systematically examined 130 emotion (audio, visual and audio-visual) datasets and found that age and ethnoracial background are the most affected dimensions, while gender is largely balanced in emotion datasets. The observed disparities between age and ethnoracial groups are compounded by scarce and inconsistent reports of demographic information. Finally, we observed a lack of information about the annotators of emotion datasets, another potential source of bias.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视听数据库中情绪表达与注释的表征性偏差
当特定性别、年龄或种族特征的人群在训练数据中没有得到充分的代表时,情感识别模型可能会受到表征偏差的影响。这可能会导致错误的预测,并在敏感环境中产生个人相关性的后果。我们系统地检查了130个情感(音频、视觉和视听)数据集,发现年龄和种族背景是受影响最大的维度,而性别在情感数据集中基本平衡。所观察到的年龄和种族群体之间的差异,由于人口资料报告稀少和不一致而更加严重。最后,我们观察到缺乏关于情感数据集注释者的信息,这是另一个潜在的偏见来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Informed Digital Consent for Use of AI Systems Grounded in a Model of Sexual Consent The Ethics of Sustainability for Artificial Intelligence Towards Functional Safety Compliance of Recurrent Neural Networks René Laloux’s vision of Ecotopian AI: Exploring the Ecosystemic AI through Fantastic Planet Two-Person Mutual Action Recognition Using Joint Dynamics and Coordinate Transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1