Using data mining to investigate interaction between channel characteristics and hydraulic geometry channel types

Leong Lee, Gregory S. Ridenour
{"title":"Using data mining to investigate interaction between channel characteristics and hydraulic geometry channel types","authors":"Leong Lee, Gregory S. Ridenour","doi":"10.1109/CIDM.2014.7008706","DOIUrl":null,"url":null,"abstract":"Data was mined for the purpose of extracting data from an online source to compute and classify hydraulic geometry as well as providing additional data (channel stability, material, and evenness) for pattern discovery. Hydraulic geometry, the relationships between a stream's geometry (width and depth) and flow (velocity and discharge), is applicable to flood prediction, water resources management, and modeling point sources of pollution. Although data to compute hydraulic geometry and additional channel data are freely available online, a systematic data mining approach is seldom if ever used for classification of hydraulic geometry and discernment of regional trends encompassing multi-state areas. In this paper, a method for computing and classifying hydraulic geometry from mined channel flow and geometry data from several states was introduced. Additional channel characteristics (stability, evenness, and material) were also mined. Channels were mapped by stability and a scatterplot matrix revealed no anomalies in the hydraulic geometry of individual channel sections. To assess the quality of data output, statistical analyses were conducted to show that our mined data were comparable to data from the literature as indicated by Euclidean distances between multivariate means, histograms of frequency distributions of hydraulic exponents, and Spearman's rank order correlation applied to channel types. Channels exhibited significant interaction between stability and material, between stability and evenness, but not between material and evenness. Boundary lines through the classification diagram were effective in discriminating stability and material but not evenness.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data was mined for the purpose of extracting data from an online source to compute and classify hydraulic geometry as well as providing additional data (channel stability, material, and evenness) for pattern discovery. Hydraulic geometry, the relationships between a stream's geometry (width and depth) and flow (velocity and discharge), is applicable to flood prediction, water resources management, and modeling point sources of pollution. Although data to compute hydraulic geometry and additional channel data are freely available online, a systematic data mining approach is seldom if ever used for classification of hydraulic geometry and discernment of regional trends encompassing multi-state areas. In this paper, a method for computing and classifying hydraulic geometry from mined channel flow and geometry data from several states was introduced. Additional channel characteristics (stability, evenness, and material) were also mined. Channels were mapped by stability and a scatterplot matrix revealed no anomalies in the hydraulic geometry of individual channel sections. To assess the quality of data output, statistical analyses were conducted to show that our mined data were comparable to data from the literature as indicated by Euclidean distances between multivariate means, histograms of frequency distributions of hydraulic exponents, and Spearman's rank order correlation applied to channel types. Channels exhibited significant interaction between stability and material, between stability and evenness, but not between material and evenness. Boundary lines through the classification diagram were effective in discriminating stability and material but not evenness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数据挖掘技术研究河道特征与水工几何河道类型之间的相互作用
挖掘数据的目的是从在线数据源中提取数据,以计算和分类水力几何形状,并为模式发现提供额外的数据(通道稳定性、材料和均匀度)。水力几何,即河流的几何形状(宽度和深度)与流量(速度和流量)之间的关系,适用于洪水预测、水资源管理和污染源建模。尽管计算水力几何图形的数据和额外的渠道数据可以在网上免费获得,但系统的数据挖掘方法很少用于水力几何图形的分类和包括多状态区域的区域趋势识别。本文介绍了一种从开采河道水流和多种状态的几何数据中计算和分类水力几何图形的方法。还挖掘了其他通道特性(稳定性、均匀性和材料)。通道通过稳定性进行映射,散点图矩阵显示单个通道断面的水力几何形状没有异常。为了评估数据输出的质量,进行了统计分析,表明我们挖掘的数据与文献中的数据相当,如多元均值之间的欧几里得距离、水力指数频率分布的直方图以及适用于渠道类型的Spearman秩次相关性。通道在稳定性和材料之间、稳定性和均匀性之间表现出显著的相互作用,而在材料和均匀性之间不表现出显著的相互作用。通过分类图的边界线可以有效地区分稳定性和材料,但不能区分均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1