Vascular Environment Identification Based on Multi-dimensional Data Fusion for Interventional Surgical Robots

Dongni. Yang, Wei Wei, Jiaqian Li, Nan Xiao
{"title":"Vascular Environment Identification Based on Multi-dimensional Data Fusion for Interventional Surgical Robots","authors":"Dongni. Yang, Wei Wei, Jiaqian Li, Nan Xiao","doi":"10.1109/ROBIO55434.2022.10011932","DOIUrl":null,"url":null,"abstract":"Vascular interventional surgery is the most commonly used method for the treatment of cardio-vascular and cerebrovascular diseases. Master-slave interventional surgical robot is a promising technology, which can further improve the accuracy and safety of surgery. However, imperfect measurement of catheter force remains a surgical risk. Inspired by the function of insect antennae, a thin-film force sensing device was installed in the catheter head. Combined with the pressure sensor in the catheter clamping device, the LSTM network was used to predict and classify the curvature of the current passing vessel, and the recognition accuracy was 97%. In the process of robotic surgery, real-time feedback of current pressure information and vascular curvature information can enhance the doctor's judgment of the operation state and improve the safety of surgery.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular interventional surgery is the most commonly used method for the treatment of cardio-vascular and cerebrovascular diseases. Master-slave interventional surgical robot is a promising technology, which can further improve the accuracy and safety of surgery. However, imperfect measurement of catheter force remains a surgical risk. Inspired by the function of insect antennae, a thin-film force sensing device was installed in the catheter head. Combined with the pressure sensor in the catheter clamping device, the LSTM network was used to predict and classify the curvature of the current passing vessel, and the recognition accuracy was 97%. In the process of robotic surgery, real-time feedback of current pressure information and vascular curvature information can enhance the doctor's judgment of the operation state and improve the safety of surgery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多维数据融合的介入手术机器人血管环境识别
血管介入手术是治疗心脑血管疾病最常用的方法。主从式介入手术机器人是一种很有前途的技术,它可以进一步提高手术的准确性和安全性。然而,不完善的导管力测量仍然是一个手术风险。受昆虫触角功能的启发,在导管头部安装了薄膜力传感装置。结合导管夹紧装置中的压力传感器,利用LSTM网络对流经血管的曲率进行预测和分类,识别准确率达到97%。在机器人手术过程中,实时反馈当前压力信息和血管曲率信息,可以增强医生对手术状态的判断,提高手术的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relative Displacement Measurement Based Affine Formation Tracking Control for Nonholonomic Kinematic Agents Steady Tracker: Tracking a Target Stably Using a Quadrotor Adaptive Super-Twisting sliding mode trajectory tracking control of underactuated unmanned surface vehicles based on prescribed performance* Design and Preliminary Evaluation of a Lightweight, Cable-Driven Hip Exoskeleton for Walking Assistance A PSO-based Resource Allocation and Task Assignment Approach for Real-Time Cloud Computing-based Robotic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1