Lei Deng, Ying Zhang, Minghua Chen, Zongpeng Li, Jack Y. B. Lee, Y. Zhang, Lingyang Song
{"title":"Device-to-Device Load Balancing for Cellular Networks","authors":"Lei Deng, Ying Zhang, Minghua Chen, Zongpeng Li, Jack Y. B. Lee, Y. Zhang, Lingyang Song","doi":"10.1109/MASS.2015.25","DOIUrl":null,"url":null,"abstract":"Small-cell architecture is widely adopted by cellular network operators to increase network capacity. By reducing the size of cells, operators can pack more (low-power) base stations in an area to better serve the growing demands, without causing extra interference. However, this approach suffers from low spectrum temporal efficiency. When a cell becomes smaller and covers fewer users, its total traffic fluctuates significantly due to insufficient traffic aggregation and exhibiting a large \"peak to-mean\" ratio. As operators customarily provision spectrum for peak traffic, large traffic temporal fluctuation inevitably leads to low spectrum temporal efficiency. In this work, we first carryout a case-study based on real-world 3G data traffic traces and confirm that 90% of the cells in a metropolitan district are less than 40% utilized. Our study also reveals that peak traffic of adjacent cells are highly asynchronous. Motivated by these observations, we advocate device-to-device (D2D) load-balancing as a useful mechanism to address the fundamental drawback of small-cell architecture. The idea is to shift traffic from a congested cell to its adjacent under-utilized cells by leveraging inter-cell D2D communication, so that the traffic can be served without using extra spectrum, effectively improving the spectrum temporal efficiency. We provide theoretical modeling and analysis to characterize the benefit of D2D load balancing, in terms of sum peak traffic reduction of individual cells. We also derive the corresponding cost, in terms of incurred D2D traffic overhead. We carry out empirical evaluations based on real-world 3G data traces to gauge the benefit and cost of D2D load balancing under practical settings. The results show that D2D load balancing can reduce the sum peak traffic of individual cells by 35% as compared to the standard scenario without D2D load balancing, at the expense of 45% D2D traffic overhead.","PeriodicalId":436496,"journal":{"name":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2015.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Small-cell architecture is widely adopted by cellular network operators to increase network capacity. By reducing the size of cells, operators can pack more (low-power) base stations in an area to better serve the growing demands, without causing extra interference. However, this approach suffers from low spectrum temporal efficiency. When a cell becomes smaller and covers fewer users, its total traffic fluctuates significantly due to insufficient traffic aggregation and exhibiting a large "peak to-mean" ratio. As operators customarily provision spectrum for peak traffic, large traffic temporal fluctuation inevitably leads to low spectrum temporal efficiency. In this work, we first carryout a case-study based on real-world 3G data traffic traces and confirm that 90% of the cells in a metropolitan district are less than 40% utilized. Our study also reveals that peak traffic of adjacent cells are highly asynchronous. Motivated by these observations, we advocate device-to-device (D2D) load-balancing as a useful mechanism to address the fundamental drawback of small-cell architecture. The idea is to shift traffic from a congested cell to its adjacent under-utilized cells by leveraging inter-cell D2D communication, so that the traffic can be served without using extra spectrum, effectively improving the spectrum temporal efficiency. We provide theoretical modeling and analysis to characterize the benefit of D2D load balancing, in terms of sum peak traffic reduction of individual cells. We also derive the corresponding cost, in terms of incurred D2D traffic overhead. We carry out empirical evaluations based on real-world 3G data traces to gauge the benefit and cost of D2D load balancing under practical settings. The results show that D2D load balancing can reduce the sum peak traffic of individual cells by 35% as compared to the standard scenario without D2D load balancing, at the expense of 45% D2D traffic overhead.