An Evolutionary Approach to Class Disjointness Axiom Discovery

T. Nguyen, A. Tettamanzi
{"title":"An Evolutionary Approach to Class Disjointness Axiom Discovery","authors":"T. Nguyen, A. Tettamanzi","doi":"10.1145/3350546.3352502","DOIUrl":null,"url":null,"abstract":"Axiom learning is an essential task in enhancing the quality of an ontology, a task that sometimes goes under the name of ontology enrichment. To overcome some limitations of recent work and to contribute to the growing library of ontology learning algorithms, we propose an evolutionary approach to automatically discover axioms from the abundant RDF data resource of the Semantic Web. We describe a method applying an instance of an Evolutionary Algorithm, namely Grammatical Evolution, to the acquisition of OWL class disjointness axioms, one important type of OWL axioms which makes it possible to detect logical inconsistencies and infer implicit information from a knowledge base. The proposed method uses an axiom scoring function based on possibility theory and is evaluated against a Gold Standard, manually constructed by knowledge engineers. Experimental results show that the given method possesses high accuracy and good coverage. CCS CONCEPTS • Computing methodologies → Ontology engineering; Machine learning algorithms; Instance-based learning; Evolutionary algorithms;","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Axiom learning is an essential task in enhancing the quality of an ontology, a task that sometimes goes under the name of ontology enrichment. To overcome some limitations of recent work and to contribute to the growing library of ontology learning algorithms, we propose an evolutionary approach to automatically discover axioms from the abundant RDF data resource of the Semantic Web. We describe a method applying an instance of an Evolutionary Algorithm, namely Grammatical Evolution, to the acquisition of OWL class disjointness axioms, one important type of OWL axioms which makes it possible to detect logical inconsistencies and infer implicit information from a knowledge base. The proposed method uses an axiom scoring function based on possibility theory and is evaluated against a Gold Standard, manually constructed by knowledge engineers. Experimental results show that the given method possesses high accuracy and good coverage. CCS CONCEPTS • Computing methodologies → Ontology engineering; Machine learning algorithms; Instance-based learning; Evolutionary algorithms;
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
类不相交公理发现的进化方法
公理学习是提高本体质量的一项重要任务,有时也被称为本体丰富。为了克服最近工作的一些局限性,并为不断增长的本体学习算法库做出贡献,我们提出了一种从语义网丰富的RDF数据资源中自动发现公理的进化方法。本文描述了一种将进化算法(即语法进化)应用于OWL类不连接公理获取的方法。类不连接公理是OWL公理的一种重要类型,它可以检测逻辑不一致并从知识库中推断隐含信息。提出的方法使用基于可能性理论的公理评分函数,并根据由知识工程师手动构建的金标准进行评估。实验结果表明,该方法具有较高的精度和良好的覆盖率。•计算方法→本体工程;机器学习算法;基于实例的学习;进化算法;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Issue Recommendation for Open Source Communities Exploring Differences in the Impact of Users’ Traces on Arabic and English Facebook Search Design and implementation of an open source Greek POS Tagger and Entity Recognizer using spaCy Extracting Ego-Centric Social Networks from Linked Open Data Towards an End-User Layer for Data Integrity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1