Regression-based Methods

A. Itkin
{"title":"Regression-based Methods","authors":"A. Itkin","doi":"10.1142/9789811212772_0004","DOIUrl":null,"url":null,"abstract":"In this chapter we describe the second and, perhaps, the most popular approach to building the local volatility surface by regressions. Regression-based methods include both parametric and non-parametric fits. Usually, all these methods deal with construction of the implied volatility surface while the local volatility can be found afterwards by using Eq.(3.2) or any its flavor.","PeriodicalId":299787,"journal":{"name":"Fitting Local Volatility","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fitting Local Volatility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811212772_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this chapter we describe the second and, perhaps, the most popular approach to building the local volatility surface by regressions. Regression-based methods include both parametric and non-parametric fits. Usually, all these methods deal with construction of the implied volatility surface while the local volatility can be found afterwards by using Eq.(3.2) or any its flavor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回归方法
在本章中,我们描述了第二种,也许是最流行的方法,通过回归来构建局部波动面。基于回归的方法包括参数拟合和非参数拟合。通常,所有这些方法都是处理隐含波动率曲面的构造,而局部波动率可以随后使用Eq.(3.2)或其任何形式来找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FRONT MATTER BACK MATTER Regression-based Methods Geometric Local Variance Gamma Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1