Exploiting Proximity Information in a Satisfiability Based Attack Against Split Manufactured Circuits

Suyuan Chen, R. Vemuri
{"title":"Exploiting Proximity Information in a Satisfiability Based Attack Against Split Manufactured Circuits","authors":"Suyuan Chen, R. Vemuri","doi":"10.1109/HST.2019.8740833","DOIUrl":null,"url":null,"abstract":"Split Manufacturing (SM) was introduced as an effective countermeasure to reverse engineering of integrated circuits and as a potential deterrent to Trojan insertion and overproduction. In SM, some wires, assigned to the back-end-of-line (BEOL) layers and fabricated at a secure facility, are hidden from the attacker. However, proximity information based attacks use physical design hints such as wire-length, combinational cycles and routing directions obtained from the FEOL (front-end-of-line) netlist to recover some or all of the BEOL signals. In addition, a recently proposed satisfiability (SAT) based attack models the BEOL signal recovery problem as a problem of configuring a key-controlled interconnect network and solves for the key values using a SAT solver. While this method can recover 100% of the BEOL signals, it takes impractically long time for large circuits. In this paper, we propose an effective method to exploit proximity information extracted from the FEOL circuit to reduce the size of the interconnection network which models the missing BEOL layers which in turn significantly reduces the size of the resulting SAT problem. This leads to efficient recovery of 100% of the ‘hidden’ BEOL signals even for large circuits. Experimental results using circuits from ISCAS85, ISCAS89 and ITC99 benchmark suites show that the proposed method is up to 80x faster than the SAT-only attack (without proximity information) while maintaining the 100% attack correctness for all combinational and sequential benchmarks.","PeriodicalId":146928,"journal":{"name":"2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2019.8740833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Split Manufacturing (SM) was introduced as an effective countermeasure to reverse engineering of integrated circuits and as a potential deterrent to Trojan insertion and overproduction. In SM, some wires, assigned to the back-end-of-line (BEOL) layers and fabricated at a secure facility, are hidden from the attacker. However, proximity information based attacks use physical design hints such as wire-length, combinational cycles and routing directions obtained from the FEOL (front-end-of-line) netlist to recover some or all of the BEOL signals. In addition, a recently proposed satisfiability (SAT) based attack models the BEOL signal recovery problem as a problem of configuring a key-controlled interconnect network and solves for the key values using a SAT solver. While this method can recover 100% of the BEOL signals, it takes impractically long time for large circuits. In this paper, we propose an effective method to exploit proximity information extracted from the FEOL circuit to reduce the size of the interconnection network which models the missing BEOL layers which in turn significantly reduces the size of the resulting SAT problem. This leads to efficient recovery of 100% of the ‘hidden’ BEOL signals even for large circuits. Experimental results using circuits from ISCAS85, ISCAS89 and ITC99 benchmark suites show that the proposed method is up to 80x faster than the SAT-only attack (without proximity information) while maintaining the 100% attack correctness for all combinational and sequential benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可满足性的分裂制造电路攻击中邻近信息的利用
提出了分段制造(SM)作为集成电路逆向工程的有效对策和对特洛伊木马插入和生产过剩的潜在威慑。在SM中,一些分配到后端线(BEOL)层并在安全设施中制造的电线对攻击者是隐藏的。然而,基于接近信息的攻击使用物理设计提示,如从FEOL(前端)网络列表获得的线长、组合周期和路由方向,以恢复部分或全部BEOL信号。此外,最近提出的一种基于可满足性(SAT)的攻击将BEOL信号恢复问题建模为配置键控互连网络的问题,并使用SAT求解器求解键值。虽然这种方法可以恢复100%的BEOL信号,但对于大型电路来说,它需要很长时间。在本文中,我们提出了一种有效的方法来利用从FEOL电路中提取的接近信息来减少互连网络的大小,该互连网络模拟了缺失的BEOL层,从而显着减少了所产生的SAT问题的大小。这导致即使对于大型电路,也可以有效地恢复100%的“隐藏”BEOL信号。使用ISCAS85、ISCAS89和ITC99基准测试套件的电路进行的实验结果表明,所提出的方法比仅sat攻击(不含接近信息)快80倍,同时在所有组合和顺序基准测试中保持100%的攻击正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Securing AES against Localized EM Attacks through Spatial Randomization of Dataflow A Statistical Fault Analysis Methodology for the Ascon Authenticated Cipher High Capability and Low-Complexity: Novel Fault Detection Scheme for Finite Field Multipliers over GF(2m) based on MSPB RATAFIA: Ransomware Analysis using Time And Frequency Informed Autoencoders Detecting Recycled SoCs by Exploiting Aging Induced Biases in Memory Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1