Analysis of the Bearing Capacity of An Adhesive Connection between a Cellular Filler and Sheathing at the Addressed Application of the Adhesive onto the Ends of Honeycombs
{"title":"Analysis of the Bearing Capacity of An Adhesive Connection between a Cellular Filler and Sheathing at the Addressed Application of the Adhesive onto the Ends of Honeycombs","authors":"A. Kondratiev, Oksana Prontsevych","doi":"10.15587/1729-4061.2020.208940","DOIUrl":null,"url":null,"abstract":"Reducing the surface mass of an adhesive is one of the most important means to improve the perfection of cellular structures. One of the promising technologies in this respect is the addressed application of the adhesive on the ends of the cells. This technology excludes the passive mass of the glue that fills the intercellular surface, which is not involved in ensuring the bearing capability of the adhesive connection. However, a decrease in the glue application leads to a decrease in the bearing capability of a product. Therefore, reliable estimation methods are required to determine the bearing capability of such structures under the conditions of detaching the sheathing prior to experimental test. This work determines a mechanism of destruction of cellular structures under transversal loading depending on their parameters and factors of the technological process of addresses gluing. We have devised a method to analyze the bearing capability of the adhesive connection between a cellular filler and the carrying sheathing at the addressed glue application on the ends of the honeycombs. The method makes it possible to predict the character of their destruction depending on the relative depth of the penetration of the flange facets of a cellular filler into the melt adhesive. A modified mathematical model of the adhesive fillet has been synthesized, which takes into consideration the heterogeneity of glued materials and the existence of a gap between the ends of the facets of honeycombs and the bearing sheathing. A finite element method was used to obtain a rather complicated character of stress distribution in the zone of an adhesive fillet cross-section. We have drawn a practical conclusion that it is necessary to glue the sandwich structures of the examined type at a temperature and pressure that ensure the relative depth of the penetration of honeycombs' ends into the adhesive exceeding 50 %. Such technological parameters at the modern level of production of cellular products would help increase their weight perfection and achieve a certain economy of energy resources, used in the process of assembling-gluing the structures of the examined type","PeriodicalId":119194,"journal":{"name":"MatSciRN: Other Structural Materials (Topic)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Other Structural Materials (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/1729-4061.2020.208940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing the surface mass of an adhesive is one of the most important means to improve the perfection of cellular structures. One of the promising technologies in this respect is the addressed application of the adhesive on the ends of the cells. This technology excludes the passive mass of the glue that fills the intercellular surface, which is not involved in ensuring the bearing capability of the adhesive connection. However, a decrease in the glue application leads to a decrease in the bearing capability of a product. Therefore, reliable estimation methods are required to determine the bearing capability of such structures under the conditions of detaching the sheathing prior to experimental test. This work determines a mechanism of destruction of cellular structures under transversal loading depending on their parameters and factors of the technological process of addresses gluing. We have devised a method to analyze the bearing capability of the adhesive connection between a cellular filler and the carrying sheathing at the addressed glue application on the ends of the honeycombs. The method makes it possible to predict the character of their destruction depending on the relative depth of the penetration of the flange facets of a cellular filler into the melt adhesive. A modified mathematical model of the adhesive fillet has been synthesized, which takes into consideration the heterogeneity of glued materials and the existence of a gap between the ends of the facets of honeycombs and the bearing sheathing. A finite element method was used to obtain a rather complicated character of stress distribution in the zone of an adhesive fillet cross-section. We have drawn a practical conclusion that it is necessary to glue the sandwich structures of the examined type at a temperature and pressure that ensure the relative depth of the penetration of honeycombs' ends into the adhesive exceeding 50 %. Such technological parameters at the modern level of production of cellular products would help increase their weight perfection and achieve a certain economy of energy resources, used in the process of assembling-gluing the structures of the examined type