Graph Partitioning with Natural Cuts

D. Delling, A. Goldberg, Ilya P. Razenshteyn, Renato F. Werneck
{"title":"Graph Partitioning with Natural Cuts","authors":"D. Delling, A. Goldberg, Ilya P. Razenshteyn, Renato F. Werneck","doi":"10.1109/IPDPS.2011.108","DOIUrl":null,"url":null,"abstract":"We present a novel approach to graph partitioning based on the notion of \\emph{natural cuts}. Our algorithm, called PUNCH, has two phases. The first phase performs a series of minimum-cut computations to identify and contract dense regions of the graph. This reduces the graph size, but preserves its general structure. The second phase uses a combination of greedy and local search heuristics to assemble the final partition. The algorithm performs especially well on road networks, which have an abundance of natural cuts (such as bridges, mountain passes, and ferries). In a few minutes, it obtains the best known partitions for continental-sized networks, significantly improving on previous results.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 130

Abstract

We present a novel approach to graph partitioning based on the notion of \emph{natural cuts}. Our algorithm, called PUNCH, has two phases. The first phase performs a series of minimum-cut computations to identify and contract dense regions of the graph. This reduces the graph size, but preserves its general structure. The second phase uses a combination of greedy and local search heuristics to assemble the final partition. The algorithm performs especially well on road networks, which have an abundance of natural cuts (such as bridges, mountain passes, and ferries). In a few minutes, it obtains the best known partitions for continental-sized networks, significantly improving on previous results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自然切割的图划分
我们提出了一种基于\emph{自然切割}概念的图划分新方法。我们的算法,叫做PUNCH,有两个阶段。第一阶段执行一系列的最小切割计算来识别和收缩图的密集区域。这减少了图的大小,但保留了它的一般结构。第二阶段使用贪婪和局部搜索启发式的组合来组装最终的分区。该算法在道路网络上表现得特别好,因为道路网络有大量的自然切口(如桥梁、山口和渡轮)。在几分钟内,它就获得了大陆大小网络的最著名的分区,大大改进了以前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Semantic Concept Detection on Manycore Platforms for Multimedia Mining Two-Stage Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields Smith-Waterman Alignment of Huge Sequences with GPU in Linear Space CheCL: Transparent Checkpointing and Process Migration of OpenCL Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1