Cristian Ramírez-Atencia, Gema Bello Orgaz, M. Rodríguez-Moreno, David Camacho
{"title":"A simple CSP-based model for Unmanned Air Vehicle Mission Planning","authors":"Cristian Ramírez-Atencia, Gema Bello Orgaz, M. Rodríguez-Moreno, David Camacho","doi":"10.1109/INISTA.2014.6873611","DOIUrl":null,"url":null,"abstract":"The problem of Mission Planning for a large number of Unmanned Air Vehicles (UAV) can be formulated as a Temporal Constraint Satisfaction Problem (TCSP). It consists on a set of locations that should visit in different time windows, and the actions that the vehicle can perform based on its features such as the payload, speed or fuel capacity. In this paper, a temporal constraint model is implemented and tested by performing Backtracking search in several missions where its complexity has been incrementally modified. The experimental phase consists on two different phases. On the one hand, several mission simulations containing (n) UAVs using different sensors and characteristics located in different waypoints, and (m) requested tasks varying mission priorities have been carried out. On the other hand, the second experimental phase uses a backtracking algorithm to look through the whole solutions space to measure the scalability of the problem. This scalability has been measured as a relation between the number of tasks to be performed in the mission and the number of UAVs needed to perform it.","PeriodicalId":339652,"journal":{"name":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2014.6873611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The problem of Mission Planning for a large number of Unmanned Air Vehicles (UAV) can be formulated as a Temporal Constraint Satisfaction Problem (TCSP). It consists on a set of locations that should visit in different time windows, and the actions that the vehicle can perform based on its features such as the payload, speed or fuel capacity. In this paper, a temporal constraint model is implemented and tested by performing Backtracking search in several missions where its complexity has been incrementally modified. The experimental phase consists on two different phases. On the one hand, several mission simulations containing (n) UAVs using different sensors and characteristics located in different waypoints, and (m) requested tasks varying mission priorities have been carried out. On the other hand, the second experimental phase uses a backtracking algorithm to look through the whole solutions space to measure the scalability of the problem. This scalability has been measured as a relation between the number of tasks to be performed in the mission and the number of UAVs needed to perform it.