Epidemiology: Analysis And Construction Of A Mathematical And Computational Model In Complex Systems For The COVID-19 Pandemic

Luan Crisostomo Pinto, Maria Luiza Rodrigues Defante, Rodrigo Lacerda da Silva
{"title":"Epidemiology: Analysis And Construction Of A Mathematical And Computational Model In Complex Systems For The COVID-19 Pandemic","authors":"Luan Crisostomo Pinto, Maria Luiza Rodrigues Defante, Rodrigo Lacerda da Silva","doi":"10.5753/encompif.2023.229932","DOIUrl":null,"url":null,"abstract":"The textbook mathematical model in epidemiology - SIS (Susceptible-Infected-Susceptible) provided the basis for proposing a new and improved model based on the observable behaviors of the current Covid-19 pandemic. The goal of this study was to analyze the behavior of the system and the influence of the LockDown factor on infected individuals. The model proposed here, called SIERDASHQ (Susceptible - Infected - Exposed - Recovered - Deceased - Asymptomatic - Symptomatic - Hospitalized - Quarantined), was simulated with values that expressed the situation of the pandemic at the national level, making it possible to compare data to the graphics produced by the program, which confirms the validity of the model.","PeriodicalId":219015,"journal":{"name":"Anais do X Encontro Nacional de Computação dos Institutos Federais (EnCompIF 2023)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do X Encontro Nacional de Computação dos Institutos Federais (EnCompIF 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/encompif.2023.229932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The textbook mathematical model in epidemiology - SIS (Susceptible-Infected-Susceptible) provided the basis for proposing a new and improved model based on the observable behaviors of the current Covid-19 pandemic. The goal of this study was to analyze the behavior of the system and the influence of the LockDown factor on infected individuals. The model proposed here, called SIERDASHQ (Susceptible - Infected - Exposed - Recovered - Deceased - Asymptomatic - Symptomatic - Hospitalized - Quarantined), was simulated with values that expressed the situation of the pandemic at the national level, making it possible to compare data to the graphics produced by the program, which confirms the validity of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流行病学:COVID-19大流行复杂系统中数学和计算模型的分析和构建
流行病学教科书数学模型SIS(易感-感染-易感)为基于当前Covid-19大流行的可观察行为提出新的改进模型提供了基础。本研究的目的是分析该系统的行为以及封锁因素对感染个体的影响。本文提出的模型名为SIERDASHQ(易感-感染-暴露-康复-死亡-无症状-有症状-住院-隔离),使用表达国家层面大流行情况的值进行模拟,从而可以将数据与程序生成的图形进行比较,从而证实了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influência de Medidas da Topologia de Redes de Ruas na Análise da Mobilidade Urbana: Um Estudo Aplicado à Cidade de João Pessoa – PB Análise do desempenho dos estudantes na disciplina de Programação de Computadores utilizando princípios de comunidades em Redes Complexas Estudo Comparativo entre um Algoritmo de Evolução Diferencial e um algoritmo Genético para classificação de Fake News na Web Análise da aplicação de metodologias ativas em disciplina de Lógica de Programação Um estudo comparativo de características das ferramentas de automação de teste end-to-end: Cypress vs QA Wolf vs TestCafé
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1