{"title":"A Novel 1-DOF Deployable Mechanism for Parabolic Cylindrical Surface Approximation","authors":"Hang Xiao, S. Lu, Xilun Ding","doi":"10.1115/detc2019-97806","DOIUrl":null,"url":null,"abstract":"\n This paper presents a novel deployable mechanism for approximating the parabolic cylindrical surface. The proposed mechanism, which can deploy and fold synchronously in the radial and axial directions, is constructed by double four-bar linkages and scissor linkages. In the fully deployed configuration, the mechanism can approximate a cylindrical surface. It can also be folded compactly into a bundle. The radial and axial deployable mechanisms are described and their position kinematics are solved. A synchronous mechanism is designed to ensure the synchronous movement of the radial and axial mechanisms. Geometric parameters of the mechanism for approximating a given parabolic cylindrical surface are obtained. The magnification ratio of the designed mechanism is calculated. The best choice of actuator is determined through static-load analysis.","PeriodicalId":211780,"journal":{"name":"Volume 5B: 43rd Mechanisms and Robotics Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a novel deployable mechanism for approximating the parabolic cylindrical surface. The proposed mechanism, which can deploy and fold synchronously in the radial and axial directions, is constructed by double four-bar linkages and scissor linkages. In the fully deployed configuration, the mechanism can approximate a cylindrical surface. It can also be folded compactly into a bundle. The radial and axial deployable mechanisms are described and their position kinematics are solved. A synchronous mechanism is designed to ensure the synchronous movement of the radial and axial mechanisms. Geometric parameters of the mechanism for approximating a given parabolic cylindrical surface are obtained. The magnification ratio of the designed mechanism is calculated. The best choice of actuator is determined through static-load analysis.