Preliminary results on UAV-based forest fire localization based on decisional navigation

A. Belbachir, J. Escareño, E. Rubio, H. Sossa
{"title":"Preliminary results on UAV-based forest fire localization based on decisional navigation","authors":"A. Belbachir, J. Escareño, E. Rubio, H. Sossa","doi":"10.1109/RED-UAS.2015.7441030","DOIUrl":null,"url":null,"abstract":"Efficient localization of forest-fires based Unmanned Aerial Vehicles (UAVs) represents valuable assessment. Due to the fast deployment of UAVs, it is practical to use them. For forest fire detection purposes, usually the area to explore is unknown, thus existing strategies use an automatic coverage exploration strategy. However, such approach is not efficient in terms of exploration time since the mission execution and achievement in an unknown environment that needs a strong vehicle decision and control. Based on this observation, we improved the localization mission by a decision-based strategy resulting from a probabilistic model based on the temperature in order to estimate the distance towards the forest-fire. The UAV optimizes its trajectory according to the state of the forest-fire knowledge by using a map to represent its knowledge and updates it at each step of its exploration. We show in this paper that our planning and control methodology for forest-fire localization is efficient. Simulation results are carried out to evaluate the proposed methodology and approves our claim.","PeriodicalId":317787,"journal":{"name":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2015.7441030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Efficient localization of forest-fires based Unmanned Aerial Vehicles (UAVs) represents valuable assessment. Due to the fast deployment of UAVs, it is practical to use them. For forest fire detection purposes, usually the area to explore is unknown, thus existing strategies use an automatic coverage exploration strategy. However, such approach is not efficient in terms of exploration time since the mission execution and achievement in an unknown environment that needs a strong vehicle decision and control. Based on this observation, we improved the localization mission by a decision-based strategy resulting from a probabilistic model based on the temperature in order to estimate the distance towards the forest-fire. The UAV optimizes its trajectory according to the state of the forest-fire knowledge by using a map to represent its knowledge and updates it at each step of its exploration. We show in this paper that our planning and control methodology for forest-fire localization is efficient. Simulation results are carried out to evaluate the proposed methodology and approves our claim.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于决策导航的无人机森林火灾定位初步结果
基于森林火灾的无人机(uav)的有效定位代表了有价值的评估。由于无人机的快速部署,使用它们是实用的。对于森林火灾探测而言,通常要探测的区域是未知的,因此现有的策略采用自动覆盖探测策略。然而,由于任务的执行和完成是在一个未知的环境中,需要很强的车辆决策和控制能力,因此这种方法在探索时间方面效率不高。在此基础上,我们通过基于温度的概率模型的决策策略改进了定位任务,以估计到森林火灾的距离。无人机根据森林火灾知识的状态,通过使用地图来表示其知识,并在其探索的每一步更新它来优化其轨迹。我们在本文中表明,我们的规划和控制方法是有效的森林火灾定位。仿真结果验证了所提出的方法,并证实了我们的主张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model identification and validation for translational movements of an octorotor UAV Vision-IMU based collaborative control of a blind UAV Velocity control of mini-UAV using a helmet system A hybrid 3D path planning method for UAVs Design of sliding mode observers for quadrotor pitch/roll angle estimation via IMU measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1