Finding traces of self-regulated learning in activity streams

Analía Cicchinelli, Eduardo Veas, A. Pardo, Viktoria Pammer-Schindler, Angela Fessl, Carla Barreiros, Stefanie N. Lindstädt
{"title":"Finding traces of self-regulated learning in activity streams","authors":"Analía Cicchinelli, Eduardo Veas, A. Pardo, Viktoria Pammer-Schindler, Angela Fessl, Carla Barreiros, Stefanie N. Lindstädt","doi":"10.1145/3170358.3170381","DOIUrl":null,"url":null,"abstract":"This paper aims to identify self-regulation strategies from students' interactions with the learning management system (LMS). We used learning analytics techniques to identify metacognitive and cognitive strategies in the data. We define three research questions that guide our studies analyzing i) self-assessments of motivation and self regulation strategies using standard methods to draw a baseline, ii) interactions with the LMS to find traces of self regulation in observable indicators, and iii) self regulation behaviours over the course duration. The results show that the observable indicators can better explain self-regulatory behaviour and its influence in performance than preliminary subjective assessments.","PeriodicalId":437369,"journal":{"name":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3170358.3170381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

This paper aims to identify self-regulation strategies from students' interactions with the learning management system (LMS). We used learning analytics techniques to identify metacognitive and cognitive strategies in the data. We define three research questions that guide our studies analyzing i) self-assessments of motivation and self regulation strategies using standard methods to draw a baseline, ii) interactions with the LMS to find traces of self regulation in observable indicators, and iii) self regulation behaviours over the course duration. The results show that the observable indicators can better explain self-regulatory behaviour and its influence in performance than preliminary subjective assessments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在活动流中寻找自我调节学习的痕迹
本文旨在从学生与学习管理系统(LMS)的互动中找出自我调节策略。我们使用学习分析技术来识别数据中的元认知和认知策略。我们定义了三个研究问题来指导我们的研究,分析i)使用标准方法绘制基线的动机和自我调节策略的自我评估,ii)与LMS的相互作用,以在可观察的指标中找到自我调节的痕迹,以及iii)整个课程期间的自我调节行为。结果表明,与初步的主观评价相比,可观察指标能更好地解释自我调节行为及其对绩效的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The half-life of MOOC knowledge: a randomized trial evaluating knowledge retention and retrieval practice in MOOCs The influence of students' cognitive and motivational characteristics on students' use of a 4C/ID-based online learning environment and their learning gain Connecting decentralized learning records: a blockchain based learning analytics platform Towards a writing analytics framework for adult english language learners Gaze insights into debugging behavior using learner-centred analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1