Detection of Adverse Drug Reaction in Tweets Using a Combination of Heterogeneous Word Embeddings

S. Aroyehun, Alexander Gelbukh
{"title":"Detection of Adverse Drug Reaction in Tweets Using a Combination of Heterogeneous Word Embeddings","authors":"S. Aroyehun, Alexander Gelbukh","doi":"10.18653/v1/W19-3224","DOIUrl":null,"url":null,"abstract":"This paper details our approach to the task of detecting reportage of adverse drug reaction in tweets as part of the 2019 social media mining for healthcare applications shared task. We employed a combination of three types of word representations as input to a LSTM model. With this approach, we achieved an F1 score of 0.5209.","PeriodicalId":265570,"journal":{"name":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper details our approach to the task of detecting reportage of adverse drug reaction in tweets as part of the 2019 social media mining for healthcare applications shared task. We employed a combination of three types of word representations as input to a LSTM model. With this approach, we achieved an F1 score of 0.5209.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于异构词嵌入组合的推文药物不良反应检测
本文详细介绍了我们在推特中检测药物不良反应报道的任务方法,这是2019年医疗保健应用共享任务的社交媒体挖掘的一部分。我们使用了三种类型的单词表示的组合作为LSTM模型的输入。通过这种方法,我们获得了0.5209的F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approaching SMM4H with Merged Models and Multi-task Learning BIGODM System in the Social Media Mining for Health Applications Shared Task 2019 HITSZ-ICRC: A Report for SMM4H Shared Task 2019-Automatic Classification and Extraction of Adverse Effect Mentions in Tweets Lexical Normalization of User-Generated Medical Text Towards Text Processing Pipelines to Identify Adverse Drug Events-related Tweets: University of Michigan @ SMM4H 2019 Task 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1