Omicron Virus Data Analytics Using Extended RNN Technique

A. Srinivasulu, Mr. Anand Kumar Gupta, Dr. Kamal Kant Hiran, Dr. Tarkeswar Barua, Mr., G. Sreenivasulu, Dr. Sivaram Rajeyyagari, Dr. Madhusudhana Subramanyam
{"title":"Omicron Virus Data Analytics Using Extended RNN Technique","authors":"A. Srinivasulu, Mr. Anand Kumar Gupta, Dr. Kamal Kant Hiran, Dr. Tarkeswar Barua, Mr., G. Sreenivasulu, Dr. Sivaram Rajeyyagari, Dr. Madhusudhana Subramanyam","doi":"10.33140/ijcrt.07.03.02","DOIUrl":null,"url":null,"abstract":"The OMICRON case that tainted human beings become first observed in China towards the end of 2021. From that point, OMICRON has spread practically all nations on the planet. To conquer this issue, it requires a fast work to recognize people tainted with OMICRON all the more rapidly. This research article proposes that RNN techniques to be utilized for rapid detection and predicting of OMICRON infections. RNN is finished utilizing the Elman agency and implemented to the OMICRON dataset gathered from Kaggle. The dataset accommodates of 75% preparing information and 25% analyzing information. The learning boundaries utilized were the most extreme age, secret hubs, and late learning. Results are for this exploration results show the level of precision is 88.28. Oddity is one of the elective conclusions for potential OMICRON illness is Recurrent Neural Network (RNN).","PeriodicalId":310821,"journal":{"name":"International Journal of Cancer Research & Therapy","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cancer Research & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/ijcrt.07.03.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The OMICRON case that tainted human beings become first observed in China towards the end of 2021. From that point, OMICRON has spread practically all nations on the planet. To conquer this issue, it requires a fast work to recognize people tainted with OMICRON all the more rapidly. This research article proposes that RNN techniques to be utilized for rapid detection and predicting of OMICRON infections. RNN is finished utilizing the Elman agency and implemented to the OMICRON dataset gathered from Kaggle. The dataset accommodates of 75% preparing information and 25% analyzing information. The learning boundaries utilized were the most extreme age, secret hubs, and late learning. Results are for this exploration results show the level of precision is 88.28. Oddity is one of the elective conclusions for potential OMICRON illness is Recurrent Neural Network (RNN).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用扩展RNN技术的欧米克隆病毒数据分析
将于2021年底在中国首次观察到被感染人类的OMICRON病例。从那时起,OMICRON已经传播到地球上几乎所有的国家。为了解决这个问题,需要更快地识别被OMICRON污染的人。本文提出将RNN技术应用于OMICRON感染的快速检测和预测。RNN利用Elman代理完成,并实现到从Kaggle收集的OMICRON数据集。该数据集包含75%的准备信息和25%的分析信息。使用的学习界限是最极端的年龄,秘密中心和晚期学习。结果表明,本次勘探的精度等级为88.28。古怪性是潜在OMICRON疾病的选择性结论之一是递归神经网络(RNN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cancer Screening in Angolan Individuals Using Tumor Marker Tests at MEDIAG, Luanda-Angola Energy Alterations in Patients with Tonsil Cancer Energy Alterations in Patients with Colon-Rectal Cancer What are the Risk Factors for the Development of Metastasis in Patients with Cancer After Receiving the COVID-19 Vaccine? The Occurrence of Cancer can be Prevented
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1