Performance statistics and learning based detection of exploitative speculative attacks

Swastika Dutta, S. Sinha
{"title":"Performance statistics and learning based detection of exploitative speculative attacks","authors":"Swastika Dutta, S. Sinha","doi":"10.1145/3310273.3322832","DOIUrl":null,"url":null,"abstract":"Most of the modern processors perform out-of-order speculative executions to maximise system performance. Spectre and Meltdown exploit these optimisations and execute certain instructions leading to leakage of confidential information of the victim. All the variants of this class of attacks necessarily exploit branch prediction or speculative execution. Using this insight, we develop a two step strategy to effectively detect these attacks using performance counter statistics, correlation coefficient model, deep neural network and fast Fourier transform. Our approach is expected to provide reliable, fast and highly accurate results with no perceivable loss in system performance or system overhead.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3322832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Most of the modern processors perform out-of-order speculative executions to maximise system performance. Spectre and Meltdown exploit these optimisations and execute certain instructions leading to leakage of confidential information of the victim. All the variants of this class of attacks necessarily exploit branch prediction or speculative execution. Using this insight, we develop a two step strategy to effectively detect these attacks using performance counter statistics, correlation coefficient model, deep neural network and fast Fourier transform. Our approach is expected to provide reliable, fast and highly accurate results with no perceivable loss in system performance or system overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
性能统计和基于学习的利用投机攻击检测
大多数现代处理器执行乱序推测执行以最大化系统性能。Spectre和Meltdown利用这些优化并执行某些指令,导致受害者的机密信息泄露。这类攻击的所有变体都必须利用分支预测或推测执行。利用这一见解,我们开发了一种两步策略,利用性能计数器统计、相关系数模型、深度神经网络和快速傅立叶变换有效地检测这些攻击。我们的方法有望提供可靠、快速和高度准确的结果,而不会对系统性能或系统开销造成可察觉的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending classical processors to support future large scale quantum accelerators Analysing the tor web with high performance graph algorithms The FitOptiVis ECSEL project: highly efficient distributed embedded image/video processing in cyber-physical systems The german informatics society's new ethical guidelines: POSTER Go green radio astronomy: Approximate Computing Perspective: Opportunities and Challenges: POSTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1