Application of multi-switch in wireless power system

Xue Zhang, Shengyang Tian, Hongxi Xue
{"title":"Application of multi-switch in wireless power system","authors":"Xue Zhang, Shengyang Tian, Hongxi Xue","doi":"10.1109/RFIT.2012.6401603","DOIUrl":null,"url":null,"abstract":"In a traditional Inverter Circuit, using parallel power MOSFETs is a common practice to improve the performance of the circuit. However, in a wireless power transfer system using magnetic resonance coupling technique, the method of parallel MOSFET would cause a lot of problems: the speed of the MOSFET converter would decrease; the switching loss would increase. The worst situation is that the switch would not be able to meet the operating frequency of the Magnetic Resonance system. As a result, we introduce the Multi-switch Method to solve the problem above. From simulation, this method could reduce the loss of an individual switch. In this paper, we design a multi-switch circuit, and compare it with the traditional inverter circuit in a magnetic resonance system. Then we analyzed the individual switch loss in these two circuits by a comparative experiment to verify the effectiveness of this new circuit. The result suggests that, this multi-switch circuit improve the individual performance of the switch, and reduce the voltage oscillating waveform of the switch significantly.","PeriodicalId":187550,"journal":{"name":"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2012.6401603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a traditional Inverter Circuit, using parallel power MOSFETs is a common practice to improve the performance of the circuit. However, in a wireless power transfer system using magnetic resonance coupling technique, the method of parallel MOSFET would cause a lot of problems: the speed of the MOSFET converter would decrease; the switching loss would increase. The worst situation is that the switch would not be able to meet the operating frequency of the Magnetic Resonance system. As a result, we introduce the Multi-switch Method to solve the problem above. From simulation, this method could reduce the loss of an individual switch. In this paper, we design a multi-switch circuit, and compare it with the traditional inverter circuit in a magnetic resonance system. Then we analyzed the individual switch loss in these two circuits by a comparative experiment to verify the effectiveness of this new circuit. The result suggests that, this multi-switch circuit improve the individual performance of the switch, and reduce the voltage oscillating waveform of the switch significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多开关在无线供电系统中的应用
在传统的逆变电路中,使用并联功率mosfet是提高电路性能的一种常见做法。然而,在采用磁共振耦合技术的无线电力传输系统中,并联MOSFET的方法会导致许多问题:MOSFET转换器的速度会降低;开关损耗会增加。最坏的情况是开关不能满足磁共振系统的工作频率。因此,我们引入多开关方法来解决上述问题。仿真结果表明,该方法可以降低单个开关的损耗。本文设计了一种多开关电路,并与传统的磁共振系统逆变电路进行了比较。然后通过对比实验分析了两种电路中单个开关损耗,验证了新电路的有效性。结果表明,该多开关电路提高了开关的个体性能,并显著减小了开关的电压振荡波形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
5-GHz band linear CMOS power amplifier IC with a novel integrated linearizer for WLAN applications Reconfigurable CMOS divide-by-3/-5 injection-locked frequency divider for dual-mode 24/40 GHz PLL application Microwave waveguide resonator based double negative metamaterial ASIC for wireless ambulatory blood pressure monitoring based on applanation tonometry Characterization of radar absorber based on square patch textured surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1