{"title":"The Role of Mangroves in Coastal and Estuarine Sedimentary Accretion in Southeast Asia","authors":"P. Chaudhuri, S. Chaudhuri, R. Ghosh","doi":"10.5772/INTECHOPEN.85591","DOIUrl":null,"url":null,"abstract":"Mangroves provide a distinctive mechanism of trapping sediment and accelerat-ing land-building processes in tide-dominated coastal and estuarine environments. The complex hydrodynamic and salinity conditions, accumulation rates of both organic and inorganic sediments, primary surface elevation, and hydroperiod influence sediment retention mechanism within mangrove ecosystems. Abundant terrigenous sediment supply can form dynamic mud banks and the complex aerial root system of mangroves may lead to accretion of sediment by weakening the tidal velocity. Such mechanisms are often enhanced by organic flocculation. The efficiency of sediment trapping by mangroves is species specific. Adaptability and resilience of mangroves enable them to cope with the moderate to high rates of sea level rise. However, subsurface movements and deep subsidence due to autocompaction may augment the effects of relative sea level rise. Increasing population pressure and forest-based economic activities have caused global reduction of mangrove coverage challenging the sedimentation processes. Marker horizon techniques and surface elevation table (SET) tests have facilitated assessment of spatial variability in patterns of sediment accretion and surface elevation in various coastal sites of species-diverse Southeast Asia, especially coastal Malaysia and Thailand. The mangroves of the eastern coast of India have witnessed sediment retention, having an association with the seasonal rainfall regime.","PeriodicalId":178387,"journal":{"name":"Sedimentation Engineering [Working Title]","volume":" 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sedimentation Engineering [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Mangroves provide a distinctive mechanism of trapping sediment and accelerat-ing land-building processes in tide-dominated coastal and estuarine environments. The complex hydrodynamic and salinity conditions, accumulation rates of both organic and inorganic sediments, primary surface elevation, and hydroperiod influence sediment retention mechanism within mangrove ecosystems. Abundant terrigenous sediment supply can form dynamic mud banks and the complex aerial root system of mangroves may lead to accretion of sediment by weakening the tidal velocity. Such mechanisms are often enhanced by organic flocculation. The efficiency of sediment trapping by mangroves is species specific. Adaptability and resilience of mangroves enable them to cope with the moderate to high rates of sea level rise. However, subsurface movements and deep subsidence due to autocompaction may augment the effects of relative sea level rise. Increasing population pressure and forest-based economic activities have caused global reduction of mangrove coverage challenging the sedimentation processes. Marker horizon techniques and surface elevation table (SET) tests have facilitated assessment of spatial variability in patterns of sediment accretion and surface elevation in various coastal sites of species-diverse Southeast Asia, especially coastal Malaysia and Thailand. The mangroves of the eastern coast of India have witnessed sediment retention, having an association with the seasonal rainfall regime.