Neural Network Based New Energy Conservation Scheme for Three Phase Induction Motor Operating under Varying Load Torques

D. Prince Winston, M. Saravanan, S. Arockia Edwin Xavier
{"title":"Neural Network Based New Energy Conservation Scheme for Three Phase Induction Motor Operating under Varying Load Torques","authors":"D. Prince Winston, M. Saravanan, S. Arockia Edwin Xavier","doi":"10.1109/PACC.2011.5978959","DOIUrl":null,"url":null,"abstract":"Due to robustness, reliability, low price and maintenance free operation, induction motors are used in most of the industrial applications. The need for energy conservation is increasing nowadays due to continuous increase in energy demand. The influence of these motors in energy intensive industries is significant in total operational cost. This paper describes a new energy conservation scheme for three phase induction motor with the help of neural network. In this new energy conservation scheme voltage compensation was employed for the various load conditions. Here neural network is used to control the voltage level for the various load conditions. Matlab simulation is done for 5 Hp, 400V, 50Hz and 7.3A three phase squirrel cage induction motor employing the new energy conservation scheme with the help of neural network.","PeriodicalId":403612,"journal":{"name":"2011 International Conference on Process Automation, Control and Computing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Process Automation, Control and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACC.2011.5978959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to robustness, reliability, low price and maintenance free operation, induction motors are used in most of the industrial applications. The need for energy conservation is increasing nowadays due to continuous increase in energy demand. The influence of these motors in energy intensive industries is significant in total operational cost. This paper describes a new energy conservation scheme for three phase induction motor with the help of neural network. In this new energy conservation scheme voltage compensation was employed for the various load conditions. Here neural network is used to control the voltage level for the various load conditions. Matlab simulation is done for 5 Hp, 400V, 50Hz and 7.3A three phase squirrel cage induction motor employing the new energy conservation scheme with the help of neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的变负载转矩三相异步电动机节能新方案
由于坚固、可靠、价格低廉和免维护运行,感应电动机在大多数工业应用中都得到了应用。由于能源需求的不断增加,节约能源的必要性日益增加。这些电机在能源密集型行业的影响是显著的总运行成本。本文介绍了一种基于神经网络的三相异步电动机节能新方案。在该节能方案中,针对不同的负载条件采用了电压补偿。本文采用神经网络对不同负载条件下的电压电平进行控制。利用神经网络对采用新节能方案的5 Hp、400V、50Hz、7.3A三相鼠笼式异步电动机进行了Matlab仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Network Soft Sensor Application in Cement Industry: Prediction of Clinker Quality Parameters Grid Based Security Framework for Online Trading An Advanced FACTS Controller for Power Flow Management in Transmission System Using IPFC Distributed Fault Diagnosis in Wireless Sensor Networks Automatic Control of Ash Extraction for a Wood Gasifier Using Fuzzy Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1