Recognition of Bengali Handwritten Digits Using Spiking Neural Network Architecture

Shantanu Bhattacharjee, Md Belal Uddin Sifat, Jayeed Bin Kibria, N. S. Pathan, Nur Mohammad
{"title":"Recognition of Bengali Handwritten Digits Using Spiking Neural Network Architecture","authors":"Shantanu Bhattacharjee, Md Belal Uddin Sifat, Jayeed Bin Kibria, N. S. Pathan, Nur Mohammad","doi":"10.1109/ECCE57851.2023.10101535","DOIUrl":null,"url":null,"abstract":"Bengali Handwritten Digit Recognition (BHDR) has extensive applications in OCR, voting machines, postal mail sorting, security systems, robotics, and many other fields. BHDR can be performed using various popular machine learning models and deep neural network architectures among which Spiking Neural Network (SNN) is getting increasing attention in recent works. SNN is an emerging machine learning model which mimics the natural processing mechanism of actual neurons of the brain. In this paper, SNN is applied for the recognition of Bangla Handwritten Digits using a popular dataset called ‘NumtaDB’. The images have been brought through various preprocessing operations for the SNN model so that it could better interpret the digits. The performance is analyzed for different values of the parameters of SNN. By systematically changing the parameters, the best combination of the values is selected for getting optimal accuracy. The model gives an accuracy of 91.36% with a comparatively faster training time using fewer computational resources relative to other machine learning models.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bengali Handwritten Digit Recognition (BHDR) has extensive applications in OCR, voting machines, postal mail sorting, security systems, robotics, and many other fields. BHDR can be performed using various popular machine learning models and deep neural network architectures among which Spiking Neural Network (SNN) is getting increasing attention in recent works. SNN is an emerging machine learning model which mimics the natural processing mechanism of actual neurons of the brain. In this paper, SNN is applied for the recognition of Bangla Handwritten Digits using a popular dataset called ‘NumtaDB’. The images have been brought through various preprocessing operations for the SNN model so that it could better interpret the digits. The performance is analyzed for different values of the parameters of SNN. By systematically changing the parameters, the best combination of the values is selected for getting optimal accuracy. The model gives an accuracy of 91.36% with a comparatively faster training time using fewer computational resources relative to other machine learning models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脉冲神经网络结构的孟加拉手写数字识别
孟加拉手写数字识别(BHDR)在OCR、投票机、邮政邮件分拣、安全系统、机器人和许多其他领域有着广泛的应用。BHDR可以使用各种流行的机器学习模型和深度神经网络架构来实现,其中峰值神经网络(SNN)在最近的研究中越来越受到关注。SNN是一种新兴的机器学习模型,它模仿了大脑实际神经元的自然处理机制。在本文中,SNN被应用于孟加拉手写体数字的识别,使用了一个名为NumtaDB的流行数据集。这些图像经过了SNN模型的各种预处理操作,使其能够更好地解释数字。分析了不同信噪比参数值下的性能。通过系统地改变参数,选择最佳的数值组合以获得最佳精度。与其他机器学习模型相比,该模型的准确率为91.36%,训练时间相对较快,计算资源相对较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclone Prediction Visualization Tools Using Machine Learning Models and Optical Flow Exploratory Perspective of PV Net-Energy-Metering for Residential Prosumers: A Case Study in Dhaka, Bangladesh Estimation of Soil Moisture with Meteorological Variables in Supervised Machine Learning Models Deep CNN-GRU Based Human Activity Recognition with Automatic Feature Extraction Using Smartphone and Wearable Sensors Bengali-English Neural Machine Translation Using Deep Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1