Conclusions and Remarks

M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen
{"title":"Conclusions and Remarks","authors":"M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen","doi":"10.1201/b21590-11","DOIUrl":null,"url":null,"abstract":"This chapter summarizes the takeaways from the different chapters of this book on the game data science process we introduced in Chapter 1. It shares some notes and experiences that can help you when embarking on using the methods discussed in this book. As a conclusion chapter, it will also delve into important topics that are not discussed in other chapters in this book, such as ethics, reproducibility problems, dealing with distributed big data, building bots from game data, using probabilistic models, etc. The chapter will also discuss the overall applications of game data science within the production process and will conclude by discussing where we see the future of the field going.","PeriodicalId":137223,"journal":{"name":"Game Data Science","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Game Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/b21590-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter summarizes the takeaways from the different chapters of this book on the game data science process we introduced in Chapter 1. It shares some notes and experiences that can help you when embarking on using the methods discussed in this book. As a conclusion chapter, it will also delve into important topics that are not discussed in other chapters in this book, such as ethics, reproducibility problems, dealing with distributed big data, building bots from game data, using probabilistic models, etc. The chapter will also discuss the overall applications of game data science within the production process and will conclude by discussing where we see the future of the field going.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结论与备注
本章总结了我们在第1章中介绍的关于游戏数据科学过程的不同章节的要点。它分享了一些笔记和经验,可以帮助您开始使用本书中讨论的方法。作为总结章,它还将深入探讨本书其他章节未讨论的重要主题,如伦理、可再现性问题、处理分布式大数据、从游戏数据构建机器人、使用概率模型等。本章还将讨论游戏数据科学在制作过程中的整体应用,并讨论该领域的未来走向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Data Science: An Introduction Advanced Sequence Analysis Clustering Methods in Game Data Science Sequence Analysis of Game Data Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1