Topic2Vec: Learning distributed representations of topics

Liqiang Niu, Xinyu Dai, Jianbing Zhang, Jiajun Chen
{"title":"Topic2Vec: Learning distributed representations of topics","authors":"Liqiang Niu, Xinyu Dai, Jianbing Zhang, Jiajun Chen","doi":"10.1109/IALP.2015.7451564","DOIUrl":null,"url":null,"abstract":"Latent Dirichlet Allocation (LDA) mining thematic structure of documents plays an important role in nature language processing and machine learning areas. However, the probability distribution from LDA only describes the statistical relationship of occurrences in the corpus and usually in practice, probability is not the best choice for feature representations. Recently, embedding methods have been proposed to represent words and documents by learning essential concepts and representations, such as Word2Vec and Doc2Vec. The embedded representations have shown more effectiveness than LDA-style representations in many tasks. In this paper, we propose the Topic2Vec approach which can learn topic representations in the same semantic vector space with words, as an alternative to probability distribution. The experimental results show that Topic2Vec achieves interesting and meaningful results.","PeriodicalId":256927,"journal":{"name":"2015 International Conference on Asian Language Processing (IALP)","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2015.7451564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

Latent Dirichlet Allocation (LDA) mining thematic structure of documents plays an important role in nature language processing and machine learning areas. However, the probability distribution from LDA only describes the statistical relationship of occurrences in the corpus and usually in practice, probability is not the best choice for feature representations. Recently, embedding methods have been proposed to represent words and documents by learning essential concepts and representations, such as Word2Vec and Doc2Vec. The embedded representations have shown more effectiveness than LDA-style representations in many tasks. In this paper, we propose the Topic2Vec approach which can learn topic representations in the same semantic vector space with words, as an alternative to probability distribution. The experimental results show that Topic2Vec achieves interesting and meaningful results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topic2Vec:学习主题的分布式表示
潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)挖掘文档的主题结构在自然语言处理和机器学习领域有着重要的作用。然而,LDA的概率分布只描述了语料库中出现的统计关系,通常在实践中,概率并不是特征表示的最佳选择。最近,人们提出了通过学习基本概念和表示来表示单词和文档的嵌入方法,如Word2Vec和Doc2Vec。在许多任务中,嵌入式表示显示出比lda样式的表示更有效。在本文中,我们提出了Topic2Vec方法,该方法可以在与单词相同的语义向量空间中学习主题表示,作为概率分布的替代方法。实验结果表明,Topic2Vec得到了有趣而有意义的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint Chinese word segmentation and punctuation prediction using deep recurrent neural network for social media data Rumor diffusion purpose analysis from social attribute to social content Multilingual Viewpoint Detection from news comments Machine translation from Japanese and French to Vietnamese, the difference among language families Japanese sentence compression using Simple English Wikipedia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1