Spatial-temporal data mining procedure: LASR

Xiaofeng Wang, Jiayang Sun, K. Bogie
{"title":"Spatial-temporal data mining procedure: LASR","authors":"Xiaofeng Wang, Jiayang Sun, K. Bogie","doi":"10.1214/074921706000000707","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the statistical development of our spatial-temporal data mining procedure, LASR (pronounced \"laser\"). LASR is the abbreviation for Longitudinal Analysis with Self-Registration of large- p-small-n data. It was motivated by a study of \"Neuromuscular Electrical Stimulation\" experiments, where the data are noisy and heterogeneous, might not align from one session to another, and involve a large number of mul- tiple comparisons. The three main components of LASR are: (1) data seg- mentation for separating heterogeneous data and for distinguishing outliers, (2) automatic approaches for spatial and temporal data registration, and (3) statistical smoothing mapping for identifying \"activated\" regions based on false-discovery-rate controlled p-maps and movies. Each of the components is of interest in its own right. As a statistical ensemble, the idea of LASR is applicable to other types of spatial-temporal data sets beyond those from the NMES experiments.","PeriodicalId":416422,"journal":{"name":"Ims Lecture Notes Monograph Series","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ims Lecture Notes Monograph Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/074921706000000707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper is concerned with the statistical development of our spatial-temporal data mining procedure, LASR (pronounced "laser"). LASR is the abbreviation for Longitudinal Analysis with Self-Registration of large- p-small-n data. It was motivated by a study of "Neuromuscular Electrical Stimulation" experiments, where the data are noisy and heterogeneous, might not align from one session to another, and involve a large number of mul- tiple comparisons. The three main components of LASR are: (1) data seg- mentation for separating heterogeneous data and for distinguishing outliers, (2) automatic approaches for spatial and temporal data registration, and (3) statistical smoothing mapping for identifying "activated" regions based on false-discovery-rate controlled p-maps and movies. Each of the components is of interest in its own right. As a statistical ensemble, the idea of LASR is applicable to other types of spatial-temporal data sets beyond those from the NMES experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空数据挖掘程序:激光雷达
本文关注的是我们的时空数据挖掘程序LASR(发音为“激光”)的统计发展。LASR是大- p-小-n数据自配准纵向分析的缩写。这项研究的动机是“神经肌肉电刺激”实验的研究,其中的数据是嘈杂的和异构的,可能从一个阶段到另一个阶段不一致,并且涉及大量的多重比较。LASR的三个主要组成部分是:(1)用于分离异构数据和区分异常值的数据分割,(2)用于空间和时间数据配准的自动方法,以及(3)用于识别基于错误发现率控制的p-map和电影的“激活”区域的统计平滑映射。每个组件都有自己的利益。作为一个统计集合,LASR的思想适用于NMES实验之外的其他类型的时空数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical thinking: From Tukey to Vardi and beyond Spatial-temporal data mining procedure: LASR Scale space consistency of piecewise constant least squares estimators - another look at the regressogram Markovianity in space and time Proof of a conjecture of N. Konno for the 1D contact process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1