{"title":"A Distributed RF Front-End for UWB Receivers","authors":"A. Safarian, Lei Zhou, P. Heydari","doi":"10.1109/CICC.2006.321013","DOIUrl":null,"url":null,"abstract":"This paper presents the design and fabrication of a novel silicon-based distributed RF front-end for ultra wideband (UWB) receivers (RX). The proposed UWB distributed RF front-end, called UWB-DRF, is suitable for UWB IF transceiver architectures. The circuit constitutes of combined low-noise amplifier (LNA) and down-conversion mixer cells distributed along the artificial transmission lines (TLs), to achieve wideband conversion gain, noise figure (NF), and linearity. A 3 stage UWB-DRF was fabricated in a 0.13 mum CMOS process. The prototype UWB-DRF achieves 13.8-15.5 dB gain over the entire UWB frequency range, while exhibiting flat NF of 5.2 dB across the band. The radio-frequency (RF), local-oscillator (LO), and intermediate-frequency (IF) ports are wideband-matched to 50Q. A programmable RF termination allows the UWB-DRF to achieve higher gain of 17.7 dB and lower NF of 3.5 dB, while trading off with few decibels of mismatch at the RF input port","PeriodicalId":269854,"journal":{"name":"IEEE Custom Integrated Circuits Conference 2006","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Custom Integrated Circuits Conference 2006","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2006.321013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper presents the design and fabrication of a novel silicon-based distributed RF front-end for ultra wideband (UWB) receivers (RX). The proposed UWB distributed RF front-end, called UWB-DRF, is suitable for UWB IF transceiver architectures. The circuit constitutes of combined low-noise amplifier (LNA) and down-conversion mixer cells distributed along the artificial transmission lines (TLs), to achieve wideband conversion gain, noise figure (NF), and linearity. A 3 stage UWB-DRF was fabricated in a 0.13 mum CMOS process. The prototype UWB-DRF achieves 13.8-15.5 dB gain over the entire UWB frequency range, while exhibiting flat NF of 5.2 dB across the band. The radio-frequency (RF), local-oscillator (LO), and intermediate-frequency (IF) ports are wideband-matched to 50Q. A programmable RF termination allows the UWB-DRF to achieve higher gain of 17.7 dB and lower NF of 3.5 dB, while trading off with few decibels of mismatch at the RF input port