Cepstrum Based Algorithm for Motor Imagery Classification

Sumanta Bhattacharyya, M. Mukul
{"title":"Cepstrum Based Algorithm for Motor Imagery Classification","authors":"Sumanta Bhattacharyya, M. Mukul","doi":"10.1109/ICMETE.2016.140","DOIUrl":null,"url":null,"abstract":"A linear convolutive mixing model based real time motor imagery classification algorithm is proposed in this paper. The proposed cepstrum based method is very first and robust unsupervised learning algorithm, extremely useful for real time brain computer interface(BCI). The cepstrum is analyzed for estimation of combined action potential generated through the active synapses of raw electroencephalogram (EEG) signal. Maximum energy of the estimated cepstrum, is used as a feature. The extracted feature further subjected to simple Bayesian probabilistic classifier, for classification. The proposed method of EEG signal pre-processing and feature extraction outperforms the conventional temporal relative spectral power (TRSP) based movement imagery classification algorithm and BCI competition II results.","PeriodicalId":167368,"journal":{"name":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMETE.2016.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A linear convolutive mixing model based real time motor imagery classification algorithm is proposed in this paper. The proposed cepstrum based method is very first and robust unsupervised learning algorithm, extremely useful for real time brain computer interface(BCI). The cepstrum is analyzed for estimation of combined action potential generated through the active synapses of raw electroencephalogram (EEG) signal. Maximum energy of the estimated cepstrum, is used as a feature. The extracted feature further subjected to simple Bayesian probabilistic classifier, for classification. The proposed method of EEG signal pre-processing and feature extraction outperforms the conventional temporal relative spectral power (TRSP) based movement imagery classification algorithm and BCI competition II results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于倒谱的运动图像分类算法
提出了一种基于线性卷积混合模型的实时运动图像分类算法。该方法是一种新颖的鲁棒无监督学习算法,对实时脑机接口(BCI)非常有用。分析倒谱用于估计原始脑电图信号活动突触产生的联合动作电位。用估计倒频谱的最大能量作为特征。将提取的特征进一步交由简单贝叶斯概率分类器进行分类。提出的脑电信号预处理和特征提取方法优于传统的基于时间相对谱功率(TRSP)的运动图像分类算法和BCI竞争II结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of E-shaped Patch Antenna with Two Rectangular Slots Text Summarization of Hindi Documents Using Rule Based Approach Estimation of Respiratory Rate from the ECG Using Instantaneous Frequency Tracking FxLMS Algorithm Low Power and High Performance Ring Counter Using Pulsed Latch Technique Satellite Image Enhancement using Discrete Wavelet Transform, Singular Value Decomposition and its Noise Performance Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1