Adaptive antenna array beamforming using variable-step-size normalized least mean square

S. A. Aghdam, J. Bagby, Raul J. Pia
{"title":"Adaptive antenna array beamforming using variable-step-size normalized least mean square","authors":"S. A. Aghdam, J. Bagby, Raul J. Pia","doi":"10.1109/ANTEM.2016.7550222","DOIUrl":null,"url":null,"abstract":"In this article novel Beamforming method is proposed for array antenna to control electrically and with software the beam pattern, reducing the noise, Orientation the pattern, signal superposition, Antenna array element selection and from hardware side in array antenna useful for power management. The proposed VSS-NLMS algorithm is used to weaken the undesirable interference. This algorithm utilizes continuous adaptation. The weights are attuned that the final weight vector to the most satisfied result. The gradient vector can be achieved by iterative beamforming algorithm from the available data. This algorithm is compared with LMS, NTMS, VSS-NLMS algorithms, it is determined that the VSS-NTMS algorithm is better performance to other algorithms. The proposed algorithm provides better convergence features than the LMS, NTMS, VSS-NTMS algorithms, because it can reduce the growth of the noise by dividing the step size parameter by input vector power. So finally, we can say that the VSS-NLMS is more useful for mobile communication system.","PeriodicalId":447985,"journal":{"name":"2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTEM.2016.7550222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this article novel Beamforming method is proposed for array antenna to control electrically and with software the beam pattern, reducing the noise, Orientation the pattern, signal superposition, Antenna array element selection and from hardware side in array antenna useful for power management. The proposed VSS-NLMS algorithm is used to weaken the undesirable interference. This algorithm utilizes continuous adaptation. The weights are attuned that the final weight vector to the most satisfied result. The gradient vector can be achieved by iterative beamforming algorithm from the available data. This algorithm is compared with LMS, NTMS, VSS-NLMS algorithms, it is determined that the VSS-NTMS algorithm is better performance to other algorithms. The proposed algorithm provides better convergence features than the LMS, NTMS, VSS-NTMS algorithms, because it can reduce the growth of the noise by dividing the step size parameter by input vector power. So finally, we can say that the VSS-NLMS is more useful for mobile communication system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变步长归一化最小均方自适应天线阵列波束形成
本文提出了一种新的阵列天线波束形成方法,通过电气控制和软件控制波束方向图,降低噪声、方向图定位、信号叠加、天线阵列元件选择以及从硬件方面对阵列天线进行电源管理。采用所提出的VSS-NLMS算法来减弱干扰。该算法采用连续自适应。将权重调整为最终的权重向量以获得最满意的结果。梯度矢量可以通过迭代波束形成算法从现有数据中得到。将该算法与LMS、NTMS、VSS-NLMS算法进行了比较,确定了VSS-NTMS算法比其他算法性能更好。该算法通过将步长参数除以输入向量功率来减小噪声的增长,具有比LMS、NTMS、VSS-NTMS算法更好的收敛特性。因此,VSS-NLMS在移动通信系统中具有更大的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impedance matching of a frequency- and pattern-reconfigurable antenna An electrically small antenna fully embedded in an LTCC substrate suitable for SoP integration An antenna for switch beam, multi-beam millimetre-wave cellular systems Optimal wave focusing in complex environments A large ESPAR with dielectric resonator subarrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1