An analysis of partition index maximization algorithm

Kuo-Lung Wu
{"title":"An analysis of partition index maximization algorithm","authors":"Kuo-Lung Wu","doi":"10.1109/FUZZY.2009.5277353","DOIUrl":null,"url":null,"abstract":"In the traditional fuzzy c-means clustering algorithm, nearly no data points have a membership value one. Özdemir and Akarum proposed a partition index maximization (PIM) algorithm which allows the data points can whole belonging to one cluster. This modification can form a core for each cluster and data points inside the core will have membership value {0,1}. In this paper, we will discuss the parameter selection problems and robust properties of the PIM algorithm.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the traditional fuzzy c-means clustering algorithm, nearly no data points have a membership value one. Özdemir and Akarum proposed a partition index maximization (PIM) algorithm which allows the data points can whole belonging to one cluster. This modification can form a core for each cluster and data points inside the core will have membership value {0,1}. In this paper, we will discuss the parameter selection problems and robust properties of the PIM algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分区索引最大化算法分析
在传统的模糊c均值聚类算法中,几乎没有数据点的隶属度值为1。Özdemir和Akarum提出了一种分区索引最大化(PIM)算法,该算法允许数据点可以全部属于一个簇。这个修改可以为每个集群形成一个核心,核心内的数据点的成员值为{0,1}。本文将讨论PIM算法的参数选择问题和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of a hybrid controller for a multi-input multi-output magnetic suspension system Fuzzy CMAC structures Hybrid SVM-GPs learning for modeling of molecular autoregulatory feedback loop systems with outliers On-line adaptive T-S fuzzy neural control for active suspension systems Analyzing KANSEI from facial expressions with fuzzy quantification theory II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1