Modeling Deep Learning Neural Networks With Denotational Mathematics in UbiHealth Environment

J. Sarivougioukas, Aristides Th. Vagelatos
{"title":"Modeling Deep Learning Neural Networks With Denotational Mathematics in UbiHealth Environment","authors":"J. Sarivougioukas, Aristides Th. Vagelatos","doi":"10.4018/ijssci.2020070102","DOIUrl":null,"url":null,"abstract":"Ubiquitous computing environments that are involved in healthcare applications are typically characterized bydynamically changing contexts.The contextual information must be efficiently processed in order to support medical decision making. The ubiquitous computing healthcare ecosystemmustbecapableofextractingmedicallyvaluablecharacteristics,makingprecisedecisions, andtakingmedicallyappropriateactions.Inthisframework,deeplearningnetworkscanbeused fordatafusionoflargeandcomplexsetsofinformationinordertomaketheappropriatemedical diagnoses.Thequalityofdecisionsdependsontheselectionofappropriatenetworkweights,which definea transformationof thegiven input intoadiagnosis.Denotationalmathematicsprovidea promisingframeworkformodelingdeeplearningnetworksandadjustingtheirbehaviorbyadapting theirweightsforthegiveninput.Furthermore,thefidelityofthenetwork’soutputcanbecontrolled byapplyingaregulatortotheweightsvalues.TheauthorsshowthatDenotationalMathematicscan serveasarigorousframeworkformodelingandcontrollingdeeplearningnetworks,therebyenhancing thequalityofmedicaldecisionmaking. KEyWoRDS Deep Learning Neural Networks, Denotational Mathematics, UbiComp, UbiHealth","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijssci.2020070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Ubiquitous computing environments that are involved in healthcare applications are typically characterized bydynamically changing contexts.The contextual information must be efficiently processed in order to support medical decision making. The ubiquitous computing healthcare ecosystemmustbecapableofextractingmedicallyvaluablecharacteristics,makingprecisedecisions, andtakingmedicallyappropriateactions.Inthisframework,deeplearningnetworkscanbeused fordatafusionoflargeandcomplexsetsofinformationinordertomaketheappropriatemedical diagnoses.Thequalityofdecisionsdependsontheselectionofappropriatenetworkweights,which definea transformationof thegiven input intoadiagnosis.Denotationalmathematicsprovidea promisingframeworkformodelingdeeplearningnetworksandadjustingtheirbehaviorbyadapting theirweightsforthegiveninput.Furthermore,thefidelityofthenetwork’soutputcanbecontrolled byapplyingaregulatortotheweightsvalues.TheauthorsshowthatDenotationalMathematicscan serveasarigorousframeworkformodelingandcontrollingdeeplearningnetworks,therebyenhancing thequalityofmedicaldecisionmaking. KEyWoRDS Deep Learning Neural Networks, Denotational Mathematics, UbiComp, UbiHealth
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在UbiHealth环境下用指称数学建模深度学习神经网络
医疗保健应用程序中涉及的无所不在的计算环境通常以bydynamically不断变化的上下文为特征。The背景信息必须被有效地处理,以支持医疗决策。无所不在的计算机医疗保健ecosystemmustbecapableofextractingmedicallyvaluablecharacteristics,makingprecisedecisions, andtakingmedicallyappropriateactions。Inthisframework,deeplearningnetworkscanbeused fordatafusionoflargeandcomplexsetsofinformationinordertomaketheappropriatemedical诊断。Thequalityofdecisionsdependsontheselectionofappropriatenetworkweights,which definea transformationof thegiven input_ intoadiagnosis。Denotationalmathematicsprovidea promisingframeworkformodelingdeeplearningnetworksandadjustingtheirbehaviorbyadapting theirweightsforthegiveninput。Furthermore,thefidelityofthenetwork 'soutputcanbecontrolled byapplyingaregulatortotheweightsvalues。TheauthorsshowthatDenotationalMathematicscan serveasarigorousframeworkformodelingandcontrollingdeeplearningnetworks,therebyenhancing thequalityofmedicaldecisionmaking。关键词:深度学习神经网络,指称数学,UbiComp, UbiHealth
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Discovery of Hospital Medical Technology Based on Partial Ordered Structure Diagrams Artificial Intelligence Techniques to improve cognitive traits of Down Syndrome Individuals: An Analysis TA-WHI: Text Analysis of Web-Based Health Information Detection of Distributed Denial of Service (DDoS) Attacks Using Computational Intelligence and Majority Vote-Based Ensemble Approach Model-Based Method for Optimisation of an Adaptive System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1