FPGA implementation of Feed-Forward Neural Networks for smart devices development

S. Oniga, A. Tisan, D. Mic, C. Lung, I. Orha, A. Buchman, A. Vida-Ratiu
{"title":"FPGA implementation of Feed-Forward Neural Networks for smart devices development","authors":"S. Oniga, A. Tisan, D. Mic, C. Lung, I. Orha, A. Buchman, A. Vida-Ratiu","doi":"10.1109/ISSCS.2009.5206129","DOIUrl":null,"url":null,"abstract":"This paper presents the results obtained in the implementation of Feed-Forward Artificial Neural Networks (FF-ANN) with one or several layers, used in the development of smart devices that needs learning capability and adaptive behavior. The networks were implemented using ANN specific blocks created by the authors using the System Generator software. The training and the testing of the networks was conducted using sets of 150 training and test vectors with 7 elements.","PeriodicalId":277587,"journal":{"name":"2009 International Symposium on Signals, Circuits and Systems","volume":" 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Signals, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2009.5206129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents the results obtained in the implementation of Feed-Forward Artificial Neural Networks (FF-ANN) with one or several layers, used in the development of smart devices that needs learning capability and adaptive behavior. The networks were implemented using ANN specific blocks created by the authors using the System Generator software. The training and the testing of the networks was conducted using sets of 150 training and test vectors with 7 elements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于智能设备开发的前馈神经网络的FPGA实现
本文介绍了一层或多层前馈人工神经网络(FF-ANN)在需要学习能力和自适应行为的智能设备开发中的应用。这些网络使用作者使用System Generator软件创建的ANN特定块来实现。使用包含7个元素的150个训练和测试向量集对网络进行训练和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos modulation communication channel: A case study A 2.4 GHz high-gain low noise amplifier Modified Ω′ metric for QPP interleavers depending on SNR Information fusion for obstacle recognition in visible and infrared images Graph drawing alogorithms based module placement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1