N. Harb, S. Niar, M. Saghir, Y. Elhillali, R. B. Atitallah
{"title":"Dynamically reconfigurable architecture for a driver assistant system","authors":"N. Harb, S. Niar, M. Saghir, Y. Elhillali, R. B. Atitallah","doi":"10.1109/SASP.2011.5941079","DOIUrl":null,"url":null,"abstract":"Application-specific programmable processors are increasingly being replaced by FPGAs, which offer high levels of logic density, rich sets of embedded hardware blocks, and a high degree of customizability and reconfigurability. New FPGA features such as Dynamic Partial Reconfiguration (DPR) can be leveraged to reduce resource utilization and power consumption while still providing high levels of performance. In this paper, we describe our implementation of a dynamically reconfigurable multiple-target tracking (MTT) module for an automotive driver assistance system. Our module implements a dynamically reconfigurable filtering block that changes with changing driving conditions.","PeriodicalId":375788,"journal":{"name":"2011 IEEE 9th Symposium on Application Specific Processors (SASP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th Symposium on Application Specific Processors (SASP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASP.2011.5941079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Application-specific programmable processors are increasingly being replaced by FPGAs, which offer high levels of logic density, rich sets of embedded hardware blocks, and a high degree of customizability and reconfigurability. New FPGA features such as Dynamic Partial Reconfiguration (DPR) can be leveraged to reduce resource utilization and power consumption while still providing high levels of performance. In this paper, we describe our implementation of a dynamically reconfigurable multiple-target tracking (MTT) module for an automotive driver assistance system. Our module implements a dynamically reconfigurable filtering block that changes with changing driving conditions.