Performance Variations in Resource Scaling for MapReduce Applications on Private and Public Clouds

Fan Zhang, M. Sakr
{"title":"Performance Variations in Resource Scaling for MapReduce Applications on Private and Public Clouds","authors":"Fan Zhang, M. Sakr","doi":"10.1109/CLOUD.2014.68","DOIUrl":null,"url":null,"abstract":"In this paper, we delineate the causes of performance variations when scaling provisioned virtual resources for a variety of MapReduce applications. Hadoop MapReduce facilitates the development and execution processes of large-scale batch applications on big data. However, provisioning suitable resources to achieve desired performance at an affordable cost requires expertise into the execution model of MapReduce, the resources available for provisioning and the execution behavior of the application at hand. As an initial step towards automating this process, we characterize the difference in execution response for different MapReduce applications while varying the number of virtualized CPUs and memory resources, number of map slots as well as cluster size on a private cloud. This characterization helps illustrate the performance variation, 5x compared to 36x speedup, of Reduce-intensive and Map-intensive applications at effectively utilizing provisioned resources at different scales (1-64 VMs). By comparing the scalability efficiency, we clearly indicate the under-provisioning or over-provisioning of resources for different MapReduce applications at large scale.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we delineate the causes of performance variations when scaling provisioned virtual resources for a variety of MapReduce applications. Hadoop MapReduce facilitates the development and execution processes of large-scale batch applications on big data. However, provisioning suitable resources to achieve desired performance at an affordable cost requires expertise into the execution model of MapReduce, the resources available for provisioning and the execution behavior of the application at hand. As an initial step towards automating this process, we characterize the difference in execution response for different MapReduce applications while varying the number of virtualized CPUs and memory resources, number of map slots as well as cluster size on a private cloud. This characterization helps illustrate the performance variation, 5x compared to 36x speedup, of Reduce-intensive and Map-intensive applications at effectively utilizing provisioned resources at different scales (1-64 VMs). By comparing the scalability efficiency, we clearly indicate the under-provisioning or over-provisioning of resources for different MapReduce applications at large scale.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
私有云和公有云上MapReduce应用的资源伸缩性能变化
在本文中,我们描述了为各种MapReduce应用程序扩展已配置虚拟资源时性能变化的原因。Hadoop MapReduce简化了基于大数据的大规模批处理应用程序的开发和执行过程。然而,要以可承受的成本提供合适的资源以实现所需的性能,需要了解MapReduce的执行模型、可用于提供的资源以及手头应用程序的执行行为。作为实现这一过程自动化的第一步,我们描述了不同MapReduce应用程序在私有云上改变虚拟cpu和内存资源数量、映射槽数量以及集群大小时执行响应的差异。这个特征有助于说明在不同规模(1-64 vm)有效利用已配置资源时,reduce密集型和map密集型应用程序的性能差异(5倍与36倍的加速相比)。通过比较可伸缩性效率,我们清楚地指出了大规模不同MapReduce应用程序的资源供应不足或过度供应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-Friendly Visualization of Cloud Quality Energy and Performance-Aware Task Scheduling in a Mobile Cloud Computing Environment MediaPaaS: A Cloud-Based Media Processing Platform for Elastic Live Broadcasting AppCloak: Rapid Migration of Legacy Applications into Cloud Introducing SSDs to the Hadoop MapReduce Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1