Salient target detection in remote sensing image via cellular automata

G. Wang, Yong-guang Chen, Suo-chang Yang, Min Gao, Ganlin Shan
{"title":"Salient target detection in remote sensing image via cellular automata","authors":"G. Wang, Yong-guang Chen, Suo-chang Yang, Min Gao, Ganlin Shan","doi":"10.1109/ICICIP.2015.7388207","DOIUrl":null,"url":null,"abstract":"In order to detect salient target in remote sensing images effectively and accurately, this paper propose a target segmentation method based on cellular automata which is usually used as a dynamic evolution model. First, we introduce the background based map to obtain saliency map with the help of a widely used superpixel segmentation method named simple linear iterative clustering. Secondly, cellular automata are employed to produce the elementary saliency map. Then enhanced saliency map can be obtained by maximum contrast of image patch method. Adaptive threshold is calculated to segment the enhanced saliency map. Consequently, the salient target detection and segmentation result can be obtained. Experiments on optical remote sensing images and synthetic aperture radar (SAR) images demonstrate that the proposed algorithm outperforms other methods such as K-means, Otsu and region growing method.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In order to detect salient target in remote sensing images effectively and accurately, this paper propose a target segmentation method based on cellular automata which is usually used as a dynamic evolution model. First, we introduce the background based map to obtain saliency map with the help of a widely used superpixel segmentation method named simple linear iterative clustering. Secondly, cellular automata are employed to produce the elementary saliency map. Then enhanced saliency map can be obtained by maximum contrast of image patch method. Adaptive threshold is calculated to segment the enhanced saliency map. Consequently, the salient target detection and segmentation result can be obtained. Experiments on optical remote sensing images and synthetic aperture radar (SAR) images demonstrate that the proposed algorithm outperforms other methods such as K-means, Otsu and region growing method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元胞自动机的遥感图像显著目标检测
为了有效准确地检测遥感图像中的显著目标,本文提出了一种基于元胞自动机的目标分割方法。元胞自动机是一种常用的动态进化模型。首先,我们引入基于背景的地图,借助一种被广泛使用的超像素分割方法——简单线性迭代聚类,获得显著性地图。其次,利用元胞自动机生成初等显著性图;然后采用最大对比度图像贴片法得到增强的显著性图。计算自适应阈值分割增强的显著性图。从而获得显著的目标检测和分割结果。在光学遥感图像和合成孔径雷达(SAR)图像上的实验表明,该算法优于K-means、Otsu和区域生长等方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new integrable hamiltonian hierarchy and associated integrable coupling system Memristor-based neural network PID controller for buck converter Online critic-identifier-actor algorithm for optimal control of nonlinear systems Optimal control for deferrable loads scheduling under the constraint of electricity supply Performance analysis for WFRFT-OFDM systems to carrier frequency offset in doubly selective fading channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1