Hybal: A Self Tutoring Algorithm for Concept Learning in Highly Autonomous Systems

W. Sverdlik, R. Reynolds, E. Zannoni
{"title":"Hybal: A Self Tutoring Algorithm for Concept Learning in Highly Autonomous Systems","authors":"W. Sverdlik, R. Reynolds, E. Zannoni","doi":"10.1109/AIHAS.1992.636857","DOIUrl":null,"url":null,"abstract":"In the paper, a hybrid learning algorithm for discovering concepts with multiple disjuncts in an exponentially growing hypothesis space is presented. The approach, HYBAL, extends the work of Hirsh 141 and Reynolds [9] to produce an autonomous system that learns to partition a large search space incrementally into successively smaller search spaces using a divide and conquer strategy. This approach is used to solve the Boolean problem for a F20 multiplexor. The system needed to examine less than 0.5% of the entire search space, in order to achieve a solution.","PeriodicalId":442147,"journal":{"name":"Proceedings of the Third Annual Conference of AI, Simulation, and Planning in High Autonomy Systems 'Integrating Perception, Planning and Action'.","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Annual Conference of AI, Simulation, and Planning in High Autonomy Systems 'Integrating Perception, Planning and Action'.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIHAS.1992.636857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the paper, a hybrid learning algorithm for discovering concepts with multiple disjuncts in an exponentially growing hypothesis space is presented. The approach, HYBAL, extends the work of Hirsh 141 and Reynolds [9] to produce an autonomous system that learns to partition a large search space incrementally into successively smaller search spaces using a divide and conquer strategy. This approach is used to solve the Boolean problem for a F20 multiplexor. The system needed to examine less than 0.5% of the entire search space, in order to achieve a solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybal:一种用于高度自治系统中概念学习的自辅导算法
本文提出了一种在指数增长的假设空间中发现具有多个分离的概念的混合学习算法。HYBAL方法扩展了Hirsh 141和Reynolds[9]的工作,产生了一个自治系统,该系统学习使用分而治之策略将大型搜索空间逐步划分为连续较小的搜索空间。该方法用于解决F20多路复用器的布尔问题。为了得到一个解决方案,系统只需要检查不到整个搜索空间的0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relevance-Derived Metafunction: How to Interface Intelligent System's Sub-Components Towards Design and Control of High Autonomy Manufacturing Systems An Integrated Method for Planning Smooth Collision-Free Trajectories for Robot Arms Representing the Plan Monitoring Needs and Resources of Robotic Systems A Development Toolkit to Support the Architecture of Flexible Manufacturing Systems Based on Intelligent Autonomous Units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1