COVID-19: A Semantic-Based Pipeline for Recommending Biomedical Entities

Márcia Barros, Andre Lamurias, Diana Sousa, Pedro Ruas, Francisco M. Couto
{"title":"COVID-19: A Semantic-Based Pipeline for Recommending Biomedical Entities","authors":"Márcia Barros, Andre Lamurias, Diana Sousa, Pedro Ruas, Francisco M. Couto","doi":"10.18653/v1/2020.nlpcovid19-2.20","DOIUrl":null,"url":null,"abstract":"With the increasing number of publications about COVID-19, it is a challenge to extract personalized knowledge suitable for each researcher. This work aims to build a new semantic-based pipeline for recommending biomedical entities to scientific researchers. To this end, we developed a pipeline that creates an implicit feedback matrix based on Named Entity Recognition (NER) on a corpus of documents, using multidisciplinary ontologies for recognizing and linking the entities. Our hypothesis is that by using ontologies from different fields in the NER phase, we can improve the results for state-of-the-art collaborative-filtering recommender systems applied to the dataset created. The tests performed using the COVID-19 Open Research Dataset (CORD-19) dataset show that when using four ontologies, the results for precision@k, for example, reach the 80%, whereas when using only one ontology, the results for precision@k drops to 20%, for the same users. Furthermore, the use of multi-fields entities may help in the discovery of new items, even if the researchers do not have items from that field in their set of preferences.","PeriodicalId":131251,"journal":{"name":"Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.nlpcovid19-2.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the increasing number of publications about COVID-19, it is a challenge to extract personalized knowledge suitable for each researcher. This work aims to build a new semantic-based pipeline for recommending biomedical entities to scientific researchers. To this end, we developed a pipeline that creates an implicit feedback matrix based on Named Entity Recognition (NER) on a corpus of documents, using multidisciplinary ontologies for recognizing and linking the entities. Our hypothesis is that by using ontologies from different fields in the NER phase, we can improve the results for state-of-the-art collaborative-filtering recommender systems applied to the dataset created. The tests performed using the COVID-19 Open Research Dataset (CORD-19) dataset show that when using four ontologies, the results for precision@k, for example, reach the 80%, whereas when using only one ontology, the results for precision@k drops to 20%, for the same users. Furthermore, the use of multi-fields entities may help in the discovery of new items, even if the researchers do not have items from that field in their set of preferences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19:基于语义的生物医学实体推荐管道
随着关于COVID-19的出版物越来越多,提取适合每位研究人员的个性化知识是一项挑战。这项工作旨在建立一个新的基于语义的管道,为科学研究人员推荐生物医学实体。为此,我们开发了一个管道,该管道基于文档语料库上的命名实体识别(NER)创建隐式反馈矩阵,使用多学科本体来识别和链接实体。我们的假设是,通过在NER阶段使用来自不同领域的本体,我们可以改善应用于创建的数据集的最先进的协同过滤推荐系统的结果。使用COVID-19开放研究数据集(CORD-19)数据集进行的测试表明,例如,当使用四个本体时,precision@k的结果达到80%,而当仅使用一个本体时,对于相同的用户,precision@k的结果降至20%。此外,使用多字段实体可能有助于发现新项目,即使研究人员在他们的首选项集合中没有来自该字段的项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Public Sentiment on Governmental COVID-19 Measures in Dutch Social Media COVID-19: A Semantic-Based Pipeline for Recommending Biomedical Entities Developing a Curated Topic Model for COVID-19 Medical Research Literature Characterizing drug mentions in COVID-19 Twitter Chatter CAiRE-COVID: A Question Answering and Query-focused Multi-Document Summarization System for COVID-19 Scholarly Information Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1