Fuzzy Imputation Method for Database Systems

J. I. Peláez, J. Doña, D. Red
{"title":"Fuzzy Imputation Method for Database Systems","authors":"J. I. Peláez, J. Doña, D. Red","doi":"10.4018/978-1-59904-853-6.CH033","DOIUrl":null,"url":null,"abstract":"The missing data and nonresponse problem is a usual difficulty of particular concern in medical and social science databases. Dealing with nonresponse can be a difficult matter and it is important to apply adequate missing data methods to obtain valid inference. Missing data is a very common problem in real data sets, and different methods to solve this problem have been developed. A simple and common strategy is to ignore missing values, thus reducing the size of the useful data set. The experience in databases has demonstrated the dangers of simply removing cases (listwise deletion) from the original data set, and deletion can introduce AbstrAct","PeriodicalId":118992,"journal":{"name":"Handbook of Research on Fuzzy Information Processing in Databases","volume":"497 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Fuzzy Information Processing in Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-853-6.CH033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The missing data and nonresponse problem is a usual difficulty of particular concern in medical and social science databases. Dealing with nonresponse can be a difficult matter and it is important to apply adequate missing data methods to obtain valid inference. Missing data is a very common problem in real data sets, and different methods to solve this problem have been developed. A simple and common strategy is to ignore missing values, thus reducing the size of the useful data set. The experience in databases has demonstrated the dangers of simply removing cases (listwise deletion) from the original data set, and deletion can introduce AbstrAct
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据库系统的模糊插补方法
数据缺失和无响应问题是医学和社会科学数据库中一个常见的问题。处理无响应可能是一件困难的事情,重要的是应用适当的缺失数据方法来获得有效的推断。数据丢失是真实数据集中一个非常常见的问题,人们已经开发了不同的方法来解决这个问题。一个简单而常见的策略是忽略缺失值,从而减少有用数据集的大小。数据库的经验表明,简单地从原始数据集中删除案例(按列表删除)是危险的,删除可能会引入AbstrAct
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hierarchical Fuzzy Sets to Query Possibilistic Databases Relational Data, Formal Concept Analysis, and Graded Attributes Evaluation of Quantified Statements Using Gradual Numbers Flexible Querying Techniques Based on CBR A Tool for Fuzzy Reasoning and Querying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1