Research on Optimizing of circularity and Surface Roughness for Turn-Mill Multitasking Machining

Wei-Tai Huang, Ze-Qi Chen, J. Chou
{"title":"Research on Optimizing of circularity and Surface Roughness for Turn-Mill Multitasking Machining","authors":"Wei-Tai Huang, Ze-Qi Chen, J. Chou","doi":"10.1109/ICSSE55923.2022.10154017","DOIUrl":null,"url":null,"abstract":"In this study, Taguchi’s robust process design optimizes the turning and milling combined processing. The quality characteristics are surface roughness and circularity. The experiment uses the $L 9\\left(3^{4}\\right)$ orthogonal table to find the parameters optimized for a target. The control factors used are tool speed (r.p.m.), axial depth of cut (mm), finishing allowance (mm), and C-axis brake pressure $\\left(\\mathrm{kg} / \\mathrm{cm}^{2}\\right)$, with roughness and circularity as characteristic targets, analyze and calculate the obtained signal-to-noise ratio (S/N) data to obtain the optimization of quality characteristics. The experimental results show that the optimized surface roughness of quality characteristics is $0.473 \\mathrm{~mm}$, and the optimized parameters are Al (5001pm), B2 $(2 \\mathrm{~mm}), \\mathrm{Cl}(0.6 \\mathrm{~mm})$, and D1 $\\left(20 \\mathrm{~kg} / \\mathrm{cm}^{2}\\right)$. The circularity is $0.0003 \\mathrm{~mm}$, and the optimized parameters are $A 3$ (900r.p.m.), B1 (1mm), C3 (1.4mm) and D2 $\\left(25 \\mathrm{~kg} / \\mathrm{cm}^{2}\\right)$. After optimization experiments, the circularity has increased by 67 %, and the surface roughness has increased by 28.8 %. It is also known that a higher tool speed will increase the cutting speed and the tool wear will be relatively greater. After comparing the tool wear of the two characteristic targets, it is found that the tool wear difference of the circularity is $0.039 \\mathrm{~mm}$, which is an increase of 59 %. The tool wear difference of the surface roughness is $0.025 \\mathrm{~mm}$, an increase of 39 %.","PeriodicalId":220599,"journal":{"name":"2022 International Conference on System Science and Engineering (ICSSE)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE55923.2022.10154017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Taguchi’s robust process design optimizes the turning and milling combined processing. The quality characteristics are surface roughness and circularity. The experiment uses the $L 9\left(3^{4}\right)$ orthogonal table to find the parameters optimized for a target. The control factors used are tool speed (r.p.m.), axial depth of cut (mm), finishing allowance (mm), and C-axis brake pressure $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$, with roughness and circularity as characteristic targets, analyze and calculate the obtained signal-to-noise ratio (S/N) data to obtain the optimization of quality characteristics. The experimental results show that the optimized surface roughness of quality characteristics is $0.473 \mathrm{~mm}$, and the optimized parameters are Al (5001pm), B2 $(2 \mathrm{~mm}), \mathrm{Cl}(0.6 \mathrm{~mm})$, and D1 $\left(20 \mathrm{~kg} / \mathrm{cm}^{2}\right)$. The circularity is $0.0003 \mathrm{~mm}$, and the optimized parameters are $A 3$ (900r.p.m.), B1 (1mm), C3 (1.4mm) and D2 $\left(25 \mathrm{~kg} / \mathrm{cm}^{2}\right)$. After optimization experiments, the circularity has increased by 67 %, and the surface roughness has increased by 28.8 %. It is also known that a higher tool speed will increase the cutting speed and the tool wear will be relatively greater. After comparing the tool wear of the two characteristic targets, it is found that the tool wear difference of the circularity is $0.039 \mathrm{~mm}$, which is an increase of 59 %. The tool wear difference of the surface roughness is $0.025 \mathrm{~mm}$, an increase of 39 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车铣多任务加工圆度和表面粗糙度优化研究
在这项研究中,田口的稳健工艺设计优化了车削和铣削组合加工。质量特征是表面粗糙度和圆度。实验使用$ l9 \left(3^{4}\right)$正交表来寻找针对目标优化的参数。采用刀具速度(r.p.m)、轴向切削深度(mm)、精加工余量(mm)、c轴制动压力$\左(\ mathm {kg} / \ mathm {cm}^{2}\右)$为控制因素,以粗糙度和圆度为特征目标,分析计算得到的信噪比(S/N)数据,得到质量特性的优化。实验结果表明,优化后的质量特性表面粗糙度为$0.473 \mathrm{~mm}$,优化参数为Al (5001pm)、B2 $(2 \mathrm{~mm})、\mathrm{Cl}(0.6 \mathrm{~mm})$、D1 $\left(20 \mathrm{~kg} / \mathrm{cm}^{2}\right)$。圆度为$0.0003 \mathrm{~mm}$,优化参数为$ a3 $ (900r.p.m.), B1 (1mm), C3 (1.4mm)和D2 $\左(25 \mathrm{~kg} / \mathrm{cm}^{2}\右)$。经过优化实验,圆度提高67%,表面粗糙度提高28.8%。我们也知道,更高的刀具速度会提高切削速度,刀具磨损会相对更大。对比两种特征靶材的刀具磨损,发现圆度的刀具磨损差值为0.039 \math {~mm}$,提高了59%。表面粗糙度的刀具磨损差值为0.025 \ mathm {~mm}$,增加了39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mathematical Lung Cancer Radiotherapy Model – Computational Simulation and Analysis A Finite-Time Trajectory Tracking Control for a Hexa-rotor with Uncertainty and Actuator Fault A Prediction for the Cluster Centers in Unlabeled Data Optimal EEG Data Segmentation in LSTM Networks for Learning Neural Dynamics of ADHD Genetic Algorithm PID Control of Second-Order Analog Circuit System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1