{"title":"Power Estimation in Sequential Circuitsy","authors":"F. Najm, S. Goel, I. Hajj","doi":"10.1145/217474.217602","DOIUrl":null,"url":null,"abstract":"A new method for power estimation in sequential circuits is presented that is based on a statistical estimation technique. By applying randomly generated input sequences to the circuit, statistics on the latch outputs are collected, by simulation, that allow efficient power estimation for the whole design. An important advantage of this approach is that the desired accuracy can be specified up-front by the user; the algorithm iterates until the specified accuracy is achieved. This has been implemented and tested on a number of sequential circuits and found to be much faster than existing techniques. We can complete the analysis of a circuit with 1,452 ip-ops and 19,253 gates in about 4.6 hours (the largest test case reported previously has 223 flip-flops).","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81
Abstract
A new method for power estimation in sequential circuits is presented that is based on a statistical estimation technique. By applying randomly generated input sequences to the circuit, statistics on the latch outputs are collected, by simulation, that allow efficient power estimation for the whole design. An important advantage of this approach is that the desired accuracy can be specified up-front by the user; the algorithm iterates until the specified accuracy is achieved. This has been implemented and tested on a number of sequential circuits and found to be much faster than existing techniques. We can complete the analysis of a circuit with 1,452 ip-ops and 19,253 gates in about 4.6 hours (the largest test case reported previously has 223 flip-flops).