TaxoLearn: A Semantic Approach to Domain Taxonomy Learning

Emmanuelle-Anna Dietz, Damir Vandic, F. Frasincar
{"title":"TaxoLearn: A Semantic Approach to Domain Taxonomy Learning","authors":"Emmanuelle-Anna Dietz, Damir Vandic, F. Frasincar","doi":"10.1109/WI-IAT.2012.129","DOIUrl":null,"url":null,"abstract":"Building domain taxonomies is a crucial task in the domain of ontology construction. Domain taxonomy learning keeps getting more important as a form of automatically obtaining a knowledge representation of a certain domain. The alternative of manually developing domain taxonomies is not trivial. The main issues encountered when manually developing a taxonomy are the non-availability of a domain knowledge expert and the considerable amount of effort needed for this task. This paper proposes Taxo Learn, an approach to automatic construction of domain taxonomies. Taxo Learn is a new methodology that combines aspects from existing approaches, but also contains new steps in order to improve the quality of the resulted domain taxonomy. The contribution of this paper is threefold. First, we employ a word sense disambiguation step when detecting concepts in the text. Second, we show the use of semantics-based hierarchical clustering for the purpose of taxonomy learning. Third, we propose a novel dynamic labeling procedure for the concept clusters. We evaluate our approach by comparing the machine generated taxonomy with a manually constructed golden taxonomy. Based on a corpus of documents in the field of financial economics, Taxo Learn shows a high precision for the learned taxonomic concept relationships.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Building domain taxonomies is a crucial task in the domain of ontology construction. Domain taxonomy learning keeps getting more important as a form of automatically obtaining a knowledge representation of a certain domain. The alternative of manually developing domain taxonomies is not trivial. The main issues encountered when manually developing a taxonomy are the non-availability of a domain knowledge expert and the considerable amount of effort needed for this task. This paper proposes Taxo Learn, an approach to automatic construction of domain taxonomies. Taxo Learn is a new methodology that combines aspects from existing approaches, but also contains new steps in order to improve the quality of the resulted domain taxonomy. The contribution of this paper is threefold. First, we employ a word sense disambiguation step when detecting concepts in the text. Second, we show the use of semantics-based hierarchical clustering for the purpose of taxonomy learning. Third, we propose a novel dynamic labeling procedure for the concept clusters. We evaluate our approach by comparing the machine generated taxonomy with a manually constructed golden taxonomy. Based on a corpus of documents in the field of financial economics, Taxo Learn shows a high precision for the learned taxonomic concept relationships.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
taxollearn:领域分类学习的语义方法
构建领域分类是本体构建领域的一项重要任务。领域分类学习作为自动获取某一领域知识表示的一种形式,越来越受到人们的重视。手动开发域分类法的替代方法也很重要。在手动开发分类法时遇到的主要问题是领域知识专家的不可用性以及此任务所需的大量工作。本文提出了一种自动构建领域分类的方法Taxo Learn。Taxo Learn是一种新的方法,它结合了现有方法的各个方面,但也包含了新的步骤,以提高结果领域分类的质量。本文的贡献有三个方面。首先,我们在检测文本中的概念时采用了词义消歧步骤。其次,我们展示了用于分类法学习的基于语义的分层聚类的使用。第三,我们提出了一种新的概念聚类动态标注方法。我们通过比较机器生成的分类法和手动构建的黄金分类法来评估我们的方法。基于金融经济学领域的文献语料库,Taxo Learn对学习到的分类概念关系显示出很高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conceptualization Effects on MEDLINE Documents Classification Using Rocchio Method Keyword Proximity Search over Large and Complex RDF Database Cognitive-Educational Constraints for Socially-Relevant MALL Technologies Mining Criminal Networks from Chat Log Inferring User Context from Spatio-Temporal Pattern Mining for Mobile Application Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1