Real-time VLSI compression for high-speed wireless local area networks

Bongjin Jung, W. Burleson
{"title":"Real-time VLSI compression for high-speed wireless local area networks","authors":"Bongjin Jung, W. Burleson","doi":"10.1109/DCC.1995.515541","DOIUrl":null,"url":null,"abstract":"Summary form only presented; substantially as follows. Presents a new compact, power-efficient, and scalable VLSI array for the first Lempel-Ziv (LZ) algorithm to be used in high-speed wireless data communication systems. Lossless data compression can be used to inexpensively halve the amount of data to be transmitted, thus improving the effective bandwidth of the communication channel and in turn, the overall network performance. For wireless networks, the data rate and latency requirement are appropriate for a dedicated VLSI implementation of LZ compression. The nature of wireless networks requires that any additional VLSI hardware also be small, low-power and inexpensive. The architecture uses a novel custom systolic array and a simple dictionary FIFO which is implemented using conventional SRAM. The architecture consists of M simple processing elements where M is the maximum length of the string to be replaced with a codeword, which for practical LAN applications, can range from 16 to 32. The systolic cell has been optimized to remove any superfluous state information or logic, thus making it completely dedicated to the task of LZ compression. A prototype chip has been implemented using 2 /spl mu/s CMOS technology. Using M=32, and assuming a 2:1 compression ratio, the system can process approximately 90 Mbps with a 100 MHz clock rate.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Summary form only presented; substantially as follows. Presents a new compact, power-efficient, and scalable VLSI array for the first Lempel-Ziv (LZ) algorithm to be used in high-speed wireless data communication systems. Lossless data compression can be used to inexpensively halve the amount of data to be transmitted, thus improving the effective bandwidth of the communication channel and in turn, the overall network performance. For wireless networks, the data rate and latency requirement are appropriate for a dedicated VLSI implementation of LZ compression. The nature of wireless networks requires that any additional VLSI hardware also be small, low-power and inexpensive. The architecture uses a novel custom systolic array and a simple dictionary FIFO which is implemented using conventional SRAM. The architecture consists of M simple processing elements where M is the maximum length of the string to be replaced with a codeword, which for practical LAN applications, can range from 16 to 32. The systolic cell has been optimized to remove any superfluous state information or logic, thus making it completely dedicated to the task of LZ compression. A prototype chip has been implemented using 2 /spl mu/s CMOS technology. Using M=32, and assuming a 2:1 compression ratio, the system can process approximately 90 Mbps with a 100 MHz clock rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速无线局域网的实时VLSI压缩
仅提供摘要形式;大体上如下。提出了一种新的紧凑,节能,可扩展的VLSI阵列,用于高速无线数据通信系统的第一个Lempel-Ziv (LZ)算法。无损数据压缩可以使传输的数据量便宜地减少一半,从而提高通信信道的有效带宽,进而提高整体网络性能。对于无线网络,数据速率和延迟要求适合LZ压缩的专用VLSI实现。无线网络的性质要求任何额外的VLSI硬件也必须体积小、功耗低且价格低廉。该架构使用一种新颖的自定义收缩阵列和一个简单的字典FIFO,使用传统的SRAM实现。该体系结构由M个简单的处理元素组成,其中M是要用码字替换的字符串的最大长度,对于实际的局域网应用,其范围可以从16到32。收缩细胞已被优化,以删除任何多余的状态信息或逻辑,从而使其完全致力于LZ压缩任务。采用2 /spl mu/s CMOS技术实现了原型芯片。使用M=32,假设压缩比为2:1,系统可以在100mhz时钟速率下处理大约90mbps的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiplication-free subband coding of color images Constraining the size of the instantaneous alphabet in trellis quantizers Classified conditional entropy coding of LSP parameters Lattice-based designs of direct sum codebooks for vector quantization On the performance of affine index assignments for redundancy free source-channel coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1