Violent Behavioral Activity Classification Using Artificial Neural Network

R. Vrskova, R. Hudec, P. Sykora, P. Kamencay, M. Benco
{"title":"Violent Behavioral Activity Classification Using Artificial Neural Network","authors":"R. Vrskova, R. Hudec, P. Sykora, P. Kamencay, M. Benco","doi":"10.1109/NTSP49686.2020.9229532","DOIUrl":null,"url":null,"abstract":"Detection of video information is a great help in classifying non-standard / abnormal human behavior. It is more difficult to detect objects from videos when information in videos are time bound to each other. In this paper we discuss the need to detect and classify this data. Also, we try to improve classification process by various methods. A specially modified convolution neural network architecture was used along with Long Short-Term Memory (LSTM) and time distribution in experiment. Convolution neural layers for 2D data, in architecture were used.","PeriodicalId":197079,"journal":{"name":"2020 New Trends in Signal Processing (NTSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTSP49686.2020.9229532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detection of video information is a great help in classifying non-standard / abnormal human behavior. It is more difficult to detect objects from videos when information in videos are time bound to each other. In this paper we discuss the need to detect and classify this data. Also, we try to improve classification process by various methods. A specially modified convolution neural network architecture was used along with Long Short-Term Memory (LSTM) and time distribution in experiment. Convolution neural layers for 2D data, in architecture were used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的暴力行为分类
视频信息的检测对分类非标准/异常的人类行为有很大帮助。当视频中的信息彼此有时间约束时,从视频中检测物体会变得更加困难。本文讨论了对这些数据进行检测和分类的必要性。同时,我们尝试用各种方法来改进分类过程。实验中采用了一种特殊改进的卷积神经网络结构,结合了长短期记忆和时间分布。在架构中使用卷积神经层处理二维数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finding the Sensitivity to Transfer Branch by Graphs Simple Filtering Algorithms for the Needs of Measuring UAV Parameters Development of Speaker Recognizer Using I-vectors in Two Programming Environments Parallel Image Signal Processing in a Distributed Car Plate Recognition System The Simulation Model for the Micro-Doppler Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1